首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   162篇
  免费   12篇
  国内免费   1篇
  175篇
  2023年   4篇
  2022年   4篇
  2021年   17篇
  2020年   6篇
  2019年   8篇
  2018年   10篇
  2017年   3篇
  2016年   8篇
  2015年   10篇
  2014年   10篇
  2013年   9篇
  2012年   18篇
  2011年   15篇
  2010年   5篇
  2009年   7篇
  2008年   8篇
  2007年   5篇
  2006年   4篇
  2005年   4篇
  2004年   4篇
  2003年   9篇
  2002年   3篇
  2001年   1篇
  1999年   1篇
  1994年   1篇
  1990年   1篇
排序方式: 共有175条查询结果,搜索用时 15 毫秒
101.
Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal-dominant disease with no effective treatment. The genetic cause of FSHD is complex and the primary pathogenic insult underlying the muscle disease is unknown. Several disease candidate genes have been proposed including DUX4 and FRG1. Expression analysis studies of FSHD report the deregulation of genes which mediate myoblast differentiation and fusion. Transgenic mice overexpressing FRG1 recapitulate the FSHD muscular dystrophy phenotype. Our current study selectively examines how increased expression of FRG1 may contribute to myoblast differentiation defects. We generated stable C2C12 cell lines overexpressing FRG1, which exhibited a myoblast fusion defect upon differentiation. To determine if myoblast fusion defects contribute to the FRG1 mouse dystrophic phenotype, this strain was crossed with skeletal muscle specific FHL1-transgenic mice. We previously reported that FHL1 promotes myoblast fusion in vitro and FHL1-transgenic mice develop skeletal muscle hypertrophy. In the current study, FRG1 mice overexpressing FHL1 showed an improvement in the dystrophic phenotype, including a reduced spinal kyphosis, increased muscle mass and myofiber size, and decreased muscle fibrosis. FHL1 expression in FRG1 mice, did not alter satellite cell number or activation, but enhanced myoblast fusion. Primary myoblasts isolated from FRG1 mice showed a myoblast fusion defect that was rescued by FHL1 expression. Therefore, increased FRG1 expression may contribute to a muscular dystrophy phenotype resembling FSHD by impairing myoblast fusion, a defect that can be rescued by enhanced myoblast fusion via expression of FHL1.  相似文献   
102.
For microorganisms cycling between free‐living and host‐associated stages, where reproduction occurs in both of these lifestyles, an interesting inquiry is whether adaptation to stress during the free‐living stage can impact microbial fitness in the host. To address this topic, the mutualism between the Hawaiian bobtail squid (Euprymna scolopes) and the marine bioluminescent bacterium Vibrio fischeri was utilized. Using microbial experimental evolution, V. fischeri was selected to low (8°C), high (34°C), and fluctuating temperature stress (8°C/34°C) for 2000 generations. The temperatures 8°C and 34°C were the lower and upper growth limits, respectively. V. fischeri was also selected to benign temperatures (21°C and 28°C) for 2000 generations, which served as controls. V. fischeri demonstrated significant adaptation to low, high, and fluctuating temperature stress. V. fischeri did not display significant adaptation to the benign temperatures. Adaptation to stressful temperatures facilitated V. fischeri’s ability to colonize the squid host relative to the ancestral lines. Bioluminescence levels also increased. Evolution to benign temperatures did not manifest these results. In summary, microbial adaptation to stress during the free‐living stage can promote coevolution between hosts and microorganisms.  相似文献   
103.
Two common tallgrass prairie species, Andropogon gerardii, thedominant C4 grass in this North American grassland, and Salviapitcheri, a C3 forb, were exposed to ambient and elevated (twiceambient) CO2 within open-top chambers throughout the 1993 growingseason. After full canopy development, stomatal density on abaxialand adaxial surfaces, guard cell length and specific leaf mass(SLM; mg cm-2) were determined for plants in the chambers aswell as in adjacent unchambered plots. Record high rainfallamounts during the 1993 growing season minimized water stressin these plants (leaf xylem pressure potential was usually >-1·5 MPa in A. gerardii) and also minimized differencesin water status among treatments. In A. gerardii, stomatal densitywas significantly higher (190 ± 7 mm-2; mean ±s.e.) in plants grown outside of the chambers compared to plantsthat developed inside the ambient CO2 chambers (161 ±5 mm-2). Thus, there was a significant 'chamber effect' on stomataldensity. At elevated levels of CO2, stomatal density was evenlower (P < 0·05; 121 ± 5 mm-2). Most stomatawere on abaxial leaf surfaces in this grass, but the ratio ofadaxial to abaxial stomatal density was greater at elevatedlevels of CO2. In S. pitcheri, stomatal density was also significantlylower when plants were grown in the open-top chambers (235 ±10 mm-2 outside vs. 140 ± 6 mm-2 in the ambient CO2 chamber).However, stomatal density was greater at elevated CO2 (218 ±12 mm-2) compared to plants from the ambient CO2 chamber. Theratio of stomata on adaxial vs. abaxial surfaces did not varysignificantly in this herb. Guard cell lengths were not significantlyaffected by growth in the chambers or by elevated CO2 for eitherspecies. Growth within the chambers resulted in lower SLM inS. pitcheri, but CO2 concentration had no effect. In A. gerardii,SLM was lower at elevated CO2. These results indicate that stomataland leaf responses to elevated CO2 are species specific, andreinforce the need to assess chamber effects along with treatmenteffects (CO2) when using open-top chambers.Copyright 1994, 1999Academic Press Andropogon gerardii, elevated CO2, Salvia pitcheri, stomatal density, tallgrass prairie  相似文献   
104.
105.
Pigeon ‘milk’ and mammalian milk have functional similarities in terms of nutritional benefit and delivery of immunoglobulins to the young. Mammalian milk has been clearly shown to aid in the development of the immune system and microbiota of the young, but similar effects have not yet been attributed to pigeon ‘milk’. Therefore, using a chicken model, we investigated the effect of pigeon ‘milk’ on immune gene expression in the Gut Associated Lymphoid Tissue (GALT) and on the composition of the caecal microbiota. Chickens fed pigeon ‘milk’ had a faster rate of growth and a better feed conversion ratio than control chickens. There was significantly enhanced expression of immune-related gene pathways and interferon-stimulated genes in the GALT of pigeon ‘milk’-fed chickens. These pathways include the innate immune response, regulation of cytokine production and regulation of B cell activation and proliferation. The caecal microbiota of pigeon ‘milk’-fed chickens was significantly more diverse than control chickens, and appears to be affected by prebiotics in pigeon ‘milk’, as well as being directly seeded by bacteria present in pigeon ‘milk’. Our results demonstrate that pigeon ‘milk’ has further modes of action which make it functionally similar to mammalian milk. We hypothesise that pigeon ‘lactation’ and mammalian lactation evolved independently but resulted in similarly functional products.  相似文献   
106.
5-Formyltetrahydrofolate is a compound that is administered as a rescue agent in methotrexate chemotherapy and in 5-fluorouracil chemotherapy for synergistic effects. It has also recently been suggested to play a role in bacterial resistance to antifolate therapy. 5,10-methenyltetrahydrofolate synthetase (MTHFS) is the only enzyme known to catalyze the conversion of this compound to 5,10-methenyltetrahydrofolate along with the hydrolysis of ATP to ADP. To better understand the roles of specific amino acids in the ATP binding pocket of this enzyme, we used site-directed mutagenesis to create 10 modified forms of the Mycoplasma pneumoniae ortholog. The Michaelis constant (Km) for each substrate and the turnover number (kcat) was determined for each mutant to help elucidate the role of individual amino acids. Data were compared to crystal structures of human and M. pneumoniae orthologs of MTHFS. Results were largely consistent with a simple coulombic and proximity model; the larger the predicted charges of an interaction and the closer those interactions were to the phosphate transferred between the substrates, the greater the reduction in ATP binding and catalytic activity of the enzyme.  相似文献   
107.
Dysfunctions in the immune system, due to genetics, disease or environmental factors, can cause bacterial colonization and chronic inflammation. In cystic fibrosis and chronic obstructive pulmonary disease, respiratory infections can initiate inflammation of the airway. We propose a system of nonlinear ordinary differential equations to describe interactions between macrophages, both inflammatory and anti-inflammatory cytokines, and bacteria. Small changes in parameters governing inflammatory cytokine production and macrophage sensitivity to cytokines result in dramatically different model behaviors. When the immune system is functioning properly, a non-aggressive pathogen will not provide a sufficient trigger to initiate chronic inflammation, however, in disease positive feedback of the inflammatory cytokine can induce chronic inflammation even after a bacterial infection has been resolved. In addition, if the macrophage population is more sensitive to inflammatory cytokines small perturbations initiated by bacteria will also lead to chronic inflammation. We have found nonaggressive bacteria are able to initiate chronic inflammation and propose why anti-inflammatory cytokine therapy may not be effective in resolving this inflammation.  相似文献   
108.
Highlights? 53BP1 inhibits BRCA1 recruitment to DSB sites in G1 ? RIF1 is the effector of 53BP1 during DSB repair ? Class-switch recombination requires RIF1 ? RIF1 recruitment to DSB sites in S/G2 is inhibited by BRCA1-CtIP  相似文献   
109.
Computational models of plants have identified gaps in our understanding of biological systems, and have revealed ways to optimize cellular processes or organ‐level architecture to increase productivity. Thus, computational models are learning tools that help direct experimentation and measurements. Models are simplifications of complex systems, and often simulate specific processes at single scales (e.g. temporal, spatial, organizational, etc.). Consequently, single‐scale models are unable to capture the critical cross‐scale interactions that result in emergent properties of the system. In this perspective article, we contend that to accurately predict how a plant will respond in an untested environment, it is necessary to integrate mathematical models across biological scales. Computationally mimicking the flow of biological information from the genome to the phenome is an important step in discovering new experimental strategies to improve crops. A key challenge is to connect models across biological, temporal and computational (e.g. CPU versus GPU) scales, and then to visualize and interpret integrated model outputs. We address this challenge by describing the efforts of the international Crops in silico consortium.  相似文献   
110.
Understanding recent biogeographic responses to climate change is fundamental for improving our predictions of likely future responses and guiding conservation planning at both local and global scales. Studies of observed biogeographic responses to 20th century climate change have principally examined effects related to ubiquitous increases in temperature – collectively termed a warming fingerprint. Although the importance of changes in other aspects of climate – particularly precipitation and water availability – is widely acknowledged from a theoretical standpoint and supported by paleontological evidence, we lack a practical understanding of how these changes interact with temperature to drive biogeographic responses. Further complicating matters, differences in life history and ecological attributes may lead species to respond differently to the same changes in climate. Here, we examine whether recent biogeographic patterns across California are consistent with a warming fingerprint. We describe how various components of climate have changed regionally in California during the 20th century and review empirical evidence of biogeographic responses to these changes, particularly elevational range shifts. Many responses to climate change do not appear to be consistent with a warming fingerprint, with downslope shifts in elevation being as common as upslope shifts across a number of taxa and many demographic and community responses being inconsistent with upslope shifts. We identify a number of potential direct and indirect mechanisms for these responses, including the influence of aspects of climate change other than temperature (e.g., the shifting seasonal balance of energy and water availability), differences in each taxon's sensitivity to climate change, trophic interactions, and land‐use change. Finally, we highlight the need to move beyond a warming fingerprint in studies of biogeographic responses by considering a more multifaceted view of climate, emphasizing local‐scale effects, and including a priori knowledge of relevant natural history for the taxa and regions under study.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号