首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   373篇
  免费   32篇
  国内免费   2篇
  2021年   4篇
  2019年   3篇
  2018年   6篇
  2017年   10篇
  2016年   4篇
  2015年   9篇
  2014年   14篇
  2013年   19篇
  2012年   18篇
  2011年   27篇
  2010年   32篇
  2009年   21篇
  2008年   21篇
  2007年   17篇
  2006年   17篇
  2005年   12篇
  2004年   13篇
  2003年   10篇
  2002年   7篇
  2001年   11篇
  2000年   11篇
  1999年   7篇
  1998年   8篇
  1997年   6篇
  1996年   5篇
  1995年   3篇
  1994年   6篇
  1993年   6篇
  1992年   7篇
  1991年   11篇
  1990年   6篇
  1989年   3篇
  1988年   6篇
  1984年   3篇
  1983年   3篇
  1982年   4篇
  1981年   2篇
  1980年   3篇
  1975年   2篇
  1974年   2篇
  1971年   1篇
  1970年   2篇
  1969年   6篇
  1967年   3篇
  1966年   1篇
  1964年   2篇
  1963年   1篇
  1935年   1篇
  1879年   1篇
  1875年   1篇
排序方式: 共有407条查询结果,搜索用时 15 毫秒
191.
Autoinflammatory disease (AID) manifests from the dysregulation of the innate immune system and is characterised by systemic and persistent inflammation. Clinical heterogeneity leads to patients presenting with one or a spectrum of phenotypic signs, leading to difficult diagnoses in the absence of a clear genetic cause. We used separate genome-wide SNP analyses to investigate five signs of AID (recurrent fever, arthritis, breed specific secondary dermatitis, otitis and systemic reactive amyloidosis) in a canine comparative model, the pure bred Chinese Shar-Pei. Analysis of 255 DNA samples revealed a shared locus on chromosome 13 spanning two peaks of association. A three-marker haplotype based on the most significant SNP (p<2.6×10−8) from each analysis showed that one haplotypic pair (H13-11) was present in the majority of AID individuals, implicating this as a shared risk factor for all phenotypes. We also noted that a genetic signature (F ST) distinguishing the phenotypic extremes of the breed specific Chinese Shar-Pei thick and wrinkled skin, flanked the chromosome 13 AID locus; suggesting that breed development and differentiation has played a parallel role in the genetics of breed fitness. Intriguingly, a potential modifier locus for amyloidosis was revealed on chromosome 14, and an investigation of candidate genes from both this and the chromosome 13 regions revealed significant (p<0.05) renal differential expression in four genes previously implicated in kidney or immune health (AOAH, ELMO1, HAS2 and IL6). These results illustrate that phenotypic heterogeneity need not be a reflection of genetic heterogeneity, and that genetic modifiers of disease could be masked if syndromes were not first considered as individual clinical signs and then as a sum of their component parts.  相似文献   
192.

Background

Multi-allelic copy number variants include examples of extensive variation between individuals in the copy number of important genes, most notably genes involved in immune function. The definition of this variation, and analysis of its impact on function, has been hampered by the technical difficulty of large-scale but accurate typing of genomic copy number. The copy-variable alpha-defensin locus DEFA1A3 on human chromosome 8 commonly varies between 4 and 10 copies per diploid genome, and presents considerable challenges for accurate high-throughput typing.

Results

In this study, we developed two paralogue ratio tests and three allelic ratio measurements that, in combination, provide an accurate and scalable method for measurement of DEFA1A3 gene number. We combined information from different measurements in a maximum-likelihood framework which suggests that most samples can be assigned to an integer copy number with high confidence, and applied it to typing 589 unrelated European DNA samples. Typing the members of three-generation pedigrees provided further reassurance that correct integer copy numbers had been assigned. Our results have allowed us to discover that the SNP rs4300027 is strongly associated with DEFA1A3 gene copy number in European samples.

Conclusions

We have developed an accurate and robust method for measurement of DEFA1A3 copy number. Interrogation of rs4300027 and associated SNPs in Genome-Wide Association Study SNP data provides no evidence that alpha-defensin copy number is a strong risk factor for phenotypes such as Crohn’s disease, type I diabetes, HIV progression and multiple sclerosis.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-14-719) contains supplementary material, which is available to authorized users.  相似文献   
193.
This study reports an amelioration of abnormal motor behaviors in tetrahydrobiopterin (BH4)-deficient Spr −/− mice by the dietary supplementation of tyrosine. Since BH4 is an essential cofactor for the conversion of phenylalanine into tyrosine as well as the synthesis of dopamine neurotransmitter within the central nervous system, the levels of tyrosine and dopamine were severely reduced in brains of BH4-deficient Spr −/− mice. We found that Spr −/− mice display variable ‘open-field’ behaviors, impaired motor functions on the ‘rotating rod’, and dystonic ‘hind-limb clasping’. In this study, we report that these aberrant motor deficits displayed by Spr −/− mice were ameliorated by the therapeutic tyrosine diet for 10 days. This study also suggests that dopamine deficiency in brains of Spr −/− mice may not be the biological feature of aberrant motor behaviors associated with BH4 deficiency. Brain levels of dopamine (DA) and its metabolites in Spr −/− mice were not substantially increased by the dietary tyrosine therapy. However, we found that mTORC1 activity severely suppressed in brains of Spr −/− mice fed a normal diet was restored 10 days after feeding the mice the tyrosine diet. The present study proposes that brain mTORC1 signaling pathway is one of the potential targets in understanding abnormal motor behaviors associated with BH4-deficiency.  相似文献   
194.
195.
The mechanical properties of mixed culture biofilms were determined by creep analysis using an AR1000 rotating disk rheometer. The biofilms were grown directly on the rheometer disks which were rotated in a chemostat for 12 d. The resulting biofilms were heterogeneous and ranged from 35?μm to 50?μm in thickness. The creep curves were all viscoelastic in nature. The close agreement between stress and strain ratio of a sample tested at 0.1 and 0.5 Pa suggested that the biofilms were tested in the linear viscoelastic range and supported the use of linear viscoelastic theory in the development of a constitutive law. The experimental data was fit to a 4-element Burger spring and dashpot model. The shear modulus (G) ranged from 0.2 to 24 Pa and the viscous coefficient (η) from 10 to 3000 Pa. These values were in the same range as those previously estimated from fluid shear deformation of biofilms in flow cells. A viscoelastic biofilm model will help to predict shear related biofilm phenomena such as elevated pressure drop, detachment, and the flow of biofilms over solid surfaces.  相似文献   
196.
Meadows JR  Hiendleder S  Kijas JW 《Heredity》2011,106(4):700-706
Five haplogroups have been identified in domestic sheep through global surveys of mitochondrial (mt) sequence variation, however these group classifications are often based on small fragments of the complete mtDNA sequence; partial control region or the cytochrome B gene. This study presents the complete mitogenome from representatives of each haplogroup identified in domestic sheep, plus a sample of their wild relatives. Comparison of the sequence successfully resolved the relationships between each haplogroup and provided insight into the relationship with wild sheep. The five haplogroups were characterised as branching independently, a radiation that shared a common ancestor 920,000 ± 190,000 years ago based on protein coding sequence. The utility of various mtDNA components to inform the true relationship between sheep was also examined with Bayesian, maximum likelihood and partitioned Bremmer support analyses. The control region was found to be the mtDNA component, which contributed the highest amount of support to the tree generated using the complete data set. This study provides the nucleus of a mtDNA mitogenome panel, which can be used to assess additional mitogenomes and serve as a reference set to evaluate small fragments of the mtDNA.  相似文献   
197.
Understanding the basis of normal heart remodeling can provide insight into the plasticity of the cardiac state, and into the potential for treating diseased tissue. In Drosophila, the adult heart arises during metamorphosis from a series of events, that include the remodeling of an existing cardiac tube, the elaboration of new inflow tracts, and the addition of a layer of longitudinal muscle fibers. We have identified genes active in all these three processes, and studied their expression in order to characterize in greater detail normal cardiac remodeling. Using a Transglutaminase-lacZ transgenic line, that is expressed in the inflow tracts of the larval and adult heart, we confirm the existence of five inflow tracts in the adult structure. In addition, expression of the Actin87E actin gene is initiated in the remodeling cardiac tube, but not in the longitudinal fibers, and we have identified an Act87E promoter fragment that recapitulates this switch in expression. We also establish that the longitudinal fibers are multinucleated, characterizing these cells as specialized skeletal muscles. Furthermore, we have defined the origin of the longitudinal fibers, as a subset of lymph gland cells associated with the larval dorsal vessel. These studies underline the myriad contributors to the formation of the adult Drosophila heart, and provide new molecular insights into the development of this complex organ.  相似文献   
198.
199.
Hereditary periodic fever syndromes are characterized by recurrent episodes of fever and inflammation with no known pathogenic or autoimmune cause. In humans, several genes have been implicated in this group of diseases, but the majority of cases remain unexplained. A similar periodic fever syndrome is relatively frequent in the Chinese Shar-Pei breed of dogs. In the western world, Shar-Pei have been strongly selected for a distinctive thick and heavily folded skin. In this study, a mutation affecting both these traits was identified. Using genome-wide SNP analysis of Shar-Pei and other breeds, the strongest signal of a breed-specific selective sweep was located on chromosome 13. The same region also harbored the strongest genome-wide association (GWA) signal for susceptibility to the periodic fever syndrome (praw = 2.3×10−6, pgenome = 0.01). Dense targeted resequencing revealed two partially overlapping duplications, 14.3 Kb and 16.1 Kb in size, unique to Shar-Pei and upstream of the Hyaluronic Acid Synthase 2 (HAS2) gene. HAS2 encodes the rate-limiting enzyme synthesizing hyaluronan (HA), a major component of the skin. HA is up-regulated and accumulates in the thickened skin of Shar-Pei. A high copy number of the 16.1 Kb duplication was associated with an increased expression of HAS2 as well as the periodic fever syndrome (p<0.0001). When fragmented, HA can act as a trigger of the innate immune system and stimulate sterile fever and inflammation. The strong selection for the skin phenotype therefore appears to enrich for a pleiotropic mutation predisposing these dogs to a periodic fever syndrome. The identification of HA as a major risk factor for this canine disease raises the potential of this glycosaminoglycan as a risk factor for human periodic fevers and as an important driver of chronic inflammation.  相似文献   
200.
Kwak SS  Suk J  Choi JH  Yang S  Kim JW  Sohn S  Chung JH  Hong YH  Lee DH  Ahn JK  Min H  Fu YM  Meadows GG  Joe CO 《Autophagy》2011,7(11):1323-1334
Tetrahydrobiopterin (BH4) deficiency is a genetic disorder associated with a variety of metabolic syndromes such as phenylketonuria (PKU). In this article, the signaling pathway by which BH4 deficiency inactivates mTORC1 leading to the activation of the autophagic pathway was studied utilizing BH4-deficient Spr-/- mice generated by the knockout of the gene encoding sepiapterin reductase (SR) catalyzing BH4 synthesis. We found that mTORC1 signaling was inactivated and autophagic pathway was activated in tissues from Spr-/- mice. This study demonstrates that tyrosine deficiency causes mTORC1 inactivation and subsequent activation of autophagic pathway in Spr-/- mice. Therapeutic tyrosine diet completely rescued dwarfism and mTORC1 inhibition but inactivated autophagic pathway in Spr-/- mice. Tyrosine-dependent inactivation of mTORC1 was further supported by mTORC1 inactivation in Pahenu2 mouse model lacking phenylalanine hydroxylase (Pah). NIH3T3 cells grown under the condition of tyrosine restriction exhibited autophagy induction. However, mTORC1 activation by RhebQ64L, a positive regulator of mTORC1, inactivated autophagic pathway in NIH3T3 cells under tyrosine-deficient conditions. In addition, this study first documents mTORC1 inactivation and autophagy induction in PKU patients with BH4 deficiency.Key words: tetrahydrobiopterin, autophagy, mTORC1, tyrosine, phenylalanine, phenylketonuria, Akt, AMPK  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号