首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2322篇
  免费   98篇
  国内免费   6篇
  2024年   1篇
  2023年   25篇
  2022年   78篇
  2021年   149篇
  2020年   94篇
  2019年   98篇
  2018年   110篇
  2017年   99篇
  2016年   118篇
  2015年   158篇
  2014年   176篇
  2013年   201篇
  2012年   174篇
  2011年   177篇
  2010年   101篇
  2009年   81篇
  2008年   125篇
  2007年   94篇
  2006年   74篇
  2005年   72篇
  2004年   64篇
  2003年   33篇
  2002年   45篇
  2001年   8篇
  2000年   7篇
  1999年   7篇
  1998年   5篇
  1997年   6篇
  1996年   7篇
  1995年   6篇
  1994年   6篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1989年   2篇
  1987年   1篇
  1985年   2篇
  1983年   4篇
  1982年   3篇
  1981年   2篇
  1980年   2篇
  1976年   1篇
  1975年   1篇
  1972年   1篇
  1964年   2篇
  1962年   1篇
  1961年   1篇
排序方式: 共有2426条查询结果,搜索用时 15 毫秒
91.

Background

Mechanomyography (MMG) has been extensively applied in clinical and experimental practice to examine muscle characteristics including muscle function (MF), prosthesis and/or switch control, signal processing, physiological exercise, and medical rehabilitation. Despite several existing MMG studies of MF, there has not yet been a review of these. This study aimed to determine the current status on the use of MMG in measuring the conditions of MFs.

Methodology/Principal Findings

Five electronic databases were extensively searched for potentially eligible studies published between 2003 and 2012. Two authors independently assessed selected articles using an MS-Word based form created for this review. Several domains (name of muscle, study type, sensor type, subject''s types, muscle contraction, measured parameters, frequency range, hardware and software, signal processing and statistical analysis, results, applications, authors'' conclusions and recommendations for future work) were extracted for further analysis. From a total of 2184 citations 119 were selected for full-text evaluation and 36 studies of MFs were identified. The systematic results find sufficient evidence that MMG may be used for assessing muscle fatigue, strength, and balance. This review also provides reason to believe that MMG may be used to examine muscle actions during movements and for monitoring muscle activities under various types of exercise paradigms.

Conclusions/Significance

Overall judging from the increasing number of articles in recent years, this review reports sufficient evidence that MMG is increasingly being used in different aspects of MF. Thus, MMG may be applied as a useful tool to examine diverse conditions of muscle activity. However, the existing studies which examined MMG for MFs were confined to a small sample size of healthy population. Therefore, future work is needed to investigate MMG, in examining MFs between a sufficient number of healthy subjects and neuromuscular patients.  相似文献   
92.

Purpose

To study spontaneous K-complex (KC) densities during slow-wave sleep. The secondary objective was to estimate intra-non-rapid eye movement (NREM) sleep differences in KC density.

Materials and Methods

It is a retrospective study using EEG data included in polysomnographic records from the archive at the sleep research laboratory of the Centre for Physiotherapy and Rehabilitation Sciences, Jamia Millia Islamia, India. The EEG records of 4459 minutes were used. The study presents a manual identification investigation of KCs in 17 healthy young adult male volunteers (age = 23.82±3.40 years and BMI = 23.42±4.18 kg/m2).

Results

N3 had a higher KC density than N2 (Z = -2.485, p = 0.013) for all of the probes taken together. Four EEG probes had a higher probe-specific KC density during N3. The inter-probe KC density differed significantly during N2 (χ2 = 67.91, p < .001), N3 (χ2 = 70.62, p < .001) and NREM (χ2 = 68.50, p < .001). The percent distribution of KC decreased uniformly with sleep cycles.

Conclusion

The inter-probe differences during N3 establish the fronto-central dominance of the KC density regardless of sleep stage. This finding supports one local theory of KC generation. The significantly higher KC density during N3 may imply that the neuro-anatomical origin of slow-wave activity and KC is the same. This temporal alignment with slow-wave activity supports the sleep-promoting function of the KC.  相似文献   
93.
Radio propagation models (RPMs) are generally employed in Vehicular Ad Hoc Networks (VANETs) to predict path loss in multiple operating environments (e.g. modern road infrastructure such as flyovers, underpasses and road tunnels). For example, different RPMs have been developed to predict propagation behaviour in road tunnels. However, most existing RPMs for road tunnels are computationally complex and are based on field measurements in frequency band not suitable for VANET deployment. Furthermore, in tunnel applications, consequences of moving radio obstacles, such as large buses and delivery trucks, are generally not considered in existing RPMs. This paper proposes a computationally inexpensive RPM with minimal set of parameters to predict path loss in an acceptable range for road tunnels. The proposed RPM utilizes geometric properties of the tunnel, such as height and width along with the distance between sender and receiver, to predict the path loss. The proposed RPM also considers the additional attenuation caused by the moving radio obstacles in road tunnels, while requiring a negligible overhead in terms of computational complexity. To demonstrate the utility of our proposed RPM, we conduct a comparative summary and evaluate its performance. Specifically, an extensive data gathering campaign is carried out in order to evaluate the proposed RPM. The field measurements use the 5 GHz frequency band, which is suitable for vehicular communication. The results demonstrate that a close match exists between the predicted values and measured values of path loss. In particular, an average accuracy of 94% is found with R2 = 0.86.  相似文献   
94.
The freshwater microalga Chlorella vulgaris was cultured batchwise on the seawater‐simulating Schlösser medium either in a 1.1‐L‐working volume helicoidal photobioreactor (HeP) or Erlenmeyer flask (EF) as control and continuously supplying air as CO2 source. In these systems, maximum biomass concentration reached 1.65 ± 0.17 g L?1 and 1.25 ± 0.06 g L?1, and maximum cell productivity 197.6 ± 20.4 mg L?1 day?1 and 160.8 ± 12.2 mg L?1 day?1, respectively. Compared to the Bold's Basal medium, commonly employed to cultivate this microorganism on a bench‐scale, the Schlösser medium ensured significant increases in all the growth parameters, namely maximum cell concentration (268% in EF and 126% in HeP), maximum biomass productivity (554% in EF and 72% in HeP), average specific growth rate (67% in EF and 42% in HeP), and maximum specific growth rate (233% in EF and 22% in HeP). The lipid fraction of biomass collected at the end of runs was analyzed in terms of both lipid content and fatty acid profile. It was found that the seawater‐simulating medium, despite of a 56–63% reduction of the overall biomass lipid content compared to the Bold's Basal one, led in HeP to significant increases in both the glycerides‐to‐total lipid ratio and polyunsaturated fatty acid content compared to the other conditions taken as an average. These results as a whole suggest that the HeP configuration could be a successful alternative to the present means to cultivate C. vulgaris as a lipid source. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:279–284, 2016  相似文献   
95.
96.
97.
98.
99.
The Pittsburgh Sleep Quality Index (PSQI) is a rigorously validated questionnaire with extensive use in sleep assessment. Findings from numerous factor analytic studies of the PSQI have been interpreted to support a heterogeneous factor structure model for the test. Nevertheless, the literature continues to lack a focused evaluation of whether this heterogeneous factor structure is justified. A consideration of this issue led to a conclusion that a closer analysis of the PSQI’s factor structure was merited. To address this need a comparative confirmatory factor analysis for assessing the performance of the accepted factors models of the PSQI was conducted. A sample of university students (n = 418), age = 20.92 ± 1.81 years, BMI = 23.30 ± 2.57 kg/m2 completed the multi-structured sleep survey at Jamia Millia Islamia, New Delhi, India. Seventeen putative factor structures (three 1-Factor, eight 2-Factor, and six 3-Factor) of the PSQI from the existing literature were selected for analysis. Fourteen models (82.35%) had almost similar values for model fit indices. Two models were misfits, and one model was a poor fit. The two misfit models incorporated gender and age as covariates. The third poor fit model was used to produce a unique path diagram, which made it distinct from the remaining 16 models. The overlapping values in the fit range of the model fit indices did not support the often projected heterogeneous factor structures of the PSQI for the vast majority of the models.  相似文献   
100.
Sensory neurons code information about stimuli in their sequence of action potentials (spikes). Intuitively, the spikes should represent stimuli with high fidelity. However, generating and propagating spikes is a metabolically expensive process. It is therefore likely that neural codes have been selected to balance energy expenditure against encoding error. Our recently proposed optimal, energy-constrained neural coder (Jones et al. Frontiers in Computational Neuroscience, 9, 61 2015) postulates that neurons time spikes to minimize the trade-off between stimulus reconstruction error and expended energy by adjusting the spike threshold using a simple dynamic threshold. Here, we show that this proposed coding scheme is related to existing coding schemes, such as rate and temporal codes. We derive an instantaneous rate coder and show that the spike-rate depends on the signal and its derivative. In the limit of high spike rates the spike train maximizes fidelity given an energy constraint (average spike-rate), and the predicted interspike intervals are identical to those generated by our existing optimal coding neuron. The instantaneous rate coder is shown to closely match the spike-rates recorded from P-type primary afferents in weakly electric fish. In particular, the coder is a predictor of the peristimulus time histogram (PSTH). When tested against in vitro cortical pyramidal neuron recordings, the instantaneous spike-rate approximates DC step inputs, matching both the average spike-rate and the time-to-first-spike (a simple temporal code). Overall, the instantaneous rate coder relates optimal, energy-constrained encoding to the concepts of rate-coding and temporal-coding, suggesting a possible unifying principle of neural encoding of sensory signals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号