首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3232篇
  免费   162篇
  国内免费   7篇
  3401篇
  2024年   8篇
  2023年   33篇
  2022年   109篇
  2021年   191篇
  2020年   103篇
  2019年   116篇
  2018年   131篇
  2017年   116篇
  2016年   140篇
  2015年   197篇
  2014年   219篇
  2013年   253篇
  2012年   248篇
  2011年   230篇
  2010年   132篇
  2009年   119篇
  2008年   178篇
  2007年   126篇
  2006年   107篇
  2005年   97篇
  2004年   86篇
  2003年   61篇
  2002年   65篇
  2001年   39篇
  2000年   36篇
  1999年   20篇
  1998年   13篇
  1997年   14篇
  1996年   8篇
  1995年   14篇
  1994年   12篇
  1993年   8篇
  1992年   24篇
  1991年   13篇
  1990年   11篇
  1989年   20篇
  1988年   11篇
  1987年   5篇
  1986年   6篇
  1984年   8篇
  1983年   8篇
  1982年   6篇
  1980年   8篇
  1979年   7篇
  1978年   4篇
  1977年   4篇
  1975年   4篇
  1973年   3篇
  1972年   6篇
  1971年   5篇
排序方式: 共有3401条查询结果,搜索用时 0 毫秒
941.
Microsatellites, or simple sequence repeats (SSRs), are highly polymorphic and universally distributed in eukaryotes. SSRs have been used extensively as sequence tagged markers in genetic studies. Recently, the functional and evolutionary importance of SSRs has received considerable attention. Here we report the mining and characterization of the SSRs in papaya genome. We analyzed SSRs from 277.4 Mb of whole genome shotgun (WGS) sequences, 51.2 Mb bacterial artificial chromosome (BAC) end sequences (BES), and 13.4 Mb expressed sequence tag (EST) sequences. The papaya SSR density was one SSR per 0.7 kb of DNA sequence in the WGS, which was higher than that in BES and EST sequences. SSR abundance was dramatically reduced as the repeat length increased. According to SSR motif length, dinucleotide repeats were the most common motif in class I, whereas hexanucleotides were the most copious in class II SSRs. The tri- and hexanucleotide repeats of both classes were greater in EST sequences compared to genomic sequences. In class I SSR, AT and AAT were the most frequent motifs in BES and WGS sequences. By contrast, AG and AAG were the most abundant in EST sequences. For SSR marker development, 9,860 primer pairs were surveyed for amplification and polymorphism. Successful amplification and polymorphic rates were 66.6% and 17.6%, respectively. The highest polymorphic rates were achieved by AT, AG, and ATG motifs. The genome wide analysis of microsatellites revealed their frequency and distribution in papaya genome, which varies among plant genomes. This complete set of SSRs markers throughout the genome will assist diverse genetic studies in papaya and related species.  相似文献   
942.
Bacterial leaf blight (BLB) caused by Xanthomonas oryzae pv. oryzae (Xoo) is one of the most damaging diseases to rice across the world. Various chemicals have been employed so far for the management of bacterial leaf blight. On the other hand, these compounds are damaging to the ecosystem and have an impact on non-target species such as humans and animals. As a result, there is a need to create a new natural inhibitor for BLB management. Deformylase (PDF) enzyme is present in all eubacteria and its necessity in bacterial protein synthesis reveals it as an attractive target for drug development. In this study, the active components of Nigella sativa have been selected based on their previously reported antimicrobial activity and screened on the active site of bacterial PDF by the in silico art of techniques. Among these compounds, dithymoquinone and p-cymene strongly bind with the PDF enzyme with binding energy values of 7.77 kcal/mol and 7.26 kcal/mol, respectively, which is comparatively higher than the control compound (−6.73 kcal/mol). Hence, the “dithymoquinone-PDF” and “p-cymene-PDF” complexes were selected for further study, and their stability was assessed by molecular dynamic (MD) simulation. In MD simulation, both selected compounds exhibited steady-state interaction with PDF for 20 ns. It has been hypothesized that p-cymene and dithymoquinone inhibit peptide deformylase and could be used as antibacterials or pesticides against Xoo against the BLB disease.  相似文献   
943.
When screening a population for infectious diseases, pooling individual specimens (e.g., blood, swabs, urine, etc.) can provide enormous cost savings when compared to testing specimens individually. In the biostatistics literature, testing pools of specimens is commonly known as group testing or pooled testing. Although estimating a population-level prevalence with group testing data has received a large amount of attention, most of this work has focused on applications involving a single disease, such as human immunodeficiency virus. Modern methods of screening now involve testing pools and individuals for multiple diseases simultaneously through the use of multiplex assays. Hou et al. (2017, Biometrics, 73, 656–665) and Hou et al. (2020, Biostatistics, 21, 417–431) recently proposed group testing protocols for multiplex assays and derived relevant case identification characteristics, including the expected number of tests and those which quantify classification accuracy. In this article, we describe Bayesian methods to estimate population-level disease probabilities from implementing these protocols or any other multiplex group testing protocol which might be carried out in practice. Our estimation methods can be used with multiplex assays for two or more diseases while incorporating the possibility of test misclassification for each disease. We use chlamydia and gonorrhea testing data collected at the State Hygienic Laboratory at the University of Iowa to illustrate our work. We also provide an online R resource practitioners can use to implement the methods in this article.  相似文献   
944.
Abstract

Elizabethkingia anophelis is an emerging human pathogen causing neonatal meningitis, catheter-associated infections and nosocomial outbreaks with high mortality rates. Besides, they are resistant to most antibiotics used in empirical therapy. In this study, therefore, we used immunoinformatic approaches to design a prophylactic peptide vaccine against E. anophelis as an alternative preventive measure. Initially, cytotoxic T-lymphocyte (CTL), helper T-lymphocyte (HTL), and linear B-lymphocyte (LBL) epitopes were predicted from the highest antigenic protein. The CTL and HTL epitopes together had a population coverage of 99.97% around the world. Eventually, six CTL, seven HTL, and two LBL epitopes were selected and used to construct a multi-epitope vaccine. The vaccine protein was found to be highly immunogenic, non-allergenic, and non-toxic. Codon adaptation and in silico cloning were performed to ensure better expression within E. coli K12 host system. The stability of the vaccine structure was also improved by disulphide bridging. In addition, molecular docking and dynamics simulation revealed strong and stable binding affinity between the vaccine and toll-like receptor 4 (TLR4) molecule. The immune simulation showed higher levels of T-cell and B-cell activities which was in coherence with actual immune response. Repeated exposure simulation resulted in higher clonal selection and faster antigen clearance. Nevertheless, experimental validation is required to ensure the immunogenic potency and safety of this vaccine to control E. anophelis infection in the future.

Communicated by Ramaswamy H. Sarma  相似文献   
945.
Septum formation in fungi is equivalent to cytokinesis. It differs mechanistically in filamentous ascomycetes (Pezizomycotina) from that of ascomycete yeasts by the retention of a central septal pore in the former group. However, septum formation in both groups is accomplished by contractile actin ring (CAR) assembly and constriction. The specific components regulating septal pore organization during septum formation are poorly understood. In this study, a novel Pezizomycotina-specific actin regulatory protein GlpA containing gelsolin domains was identified using bioinformatics. A glpA deletion mutant exhibited increased distances between septa, abnormal septum morphology and defective regulation of septal pore closure. In glpA deletion mutant hyphae, overaccumulation of actin filament (F-actin) was observed, and the CAR was abnormal with improper assembly and failure in constriction. In wild-type cells, GlpA was found at the septum formation site similarly to the CAR. The N-terminal 329 residues of GlpA are required for its localization to the septum formation site and essential for proper septum formation, while its C-terminal gelsolin domains are required for the regular CAR dynamics during septum formation. Finally, in this study we elucidated a novel Pezizomycotina-specific actin modulating component, which participates in septum formation by regulating the CAR dynamics.  相似文献   
946.
Bovine genital campylobacteriosis caused by Campylobacter fetus subsp. venerealis (Cfv) is of considerable economic importance to the cattle industry worldwide. Cfv causes syndrome of temporary infertility in female cattle, early embryonic mortality, aberrant oestrus cycles, delayed conception, abortions and poor calving rates. In the present study, a total of 200 samples obtained from vaginal swabs, cervicovaginal mucous (CVM), preputial washes and semen straws were investigated that were obtained from organized cattle farm of MLRI, Manasbal and unorganized sectors. Out of a total of 200 samples, 49 (47·57%) vaginal swabs, 1 (3·33%) preputial wash and 8 (25%) carried out CVM samples were positive for Cfv, whereas none of the semen straws were positive for Cfv. A total of eleven isolates of Cfv were recovered. PFGE (Pulse field gel electrophoresis) analysis revealed four different pulsotypes (I–IV) circulating in the screened farms. A common pulsotype circulating among farms could not be established. Insertion element (ISCfe1), a 233 bp amplicon of Cfv, was sequenced and the sequence was deposited in GenBank (accession no: MK475662).  相似文献   
947.
948.
Xanthones from a tropical fruit of Garcinia mangostana L. is known to possess a wide spectrum of pharmacologic properties, including antioxidant, anti-bacterial, anti-inflammatory, and antidiabetic activities. The current study aimed to assess the possible protective effects of xanthones against lead acetate (PbAc)-induced chronic kidney disease (CKD). To accomplish, in vitro antioxidant assays of xanthones, in vivo oxidative stress parameters, histopathology, inflammatory parameters were evaluated using PbAc-induced IRC male mice. The study was supported by in silico molecular docking of respective organ receptor protein-ligand interaction. Results revealed that xanthones potentially scavenged the DPPH, superoxide, hydroxyl, and nitric oxide radicals. Oxidative stress, kidney dysfunction, inflammatory markers, and kidney apoptosis increased by PbAc were attenuated with the co-treatment of xanthones. The treatment remarkably improved the tissue architecture. Of note, in silico prediction of activity study showed that protective role of xanthones could be due to its efficacy to activate the Nrf-2, regulate the intracellular [Ca2+], as well as downregulate the NF-kB, MAPK pathway. In a nutshell, xanthones could be a potential candidate for the management of PbAc-induced kidney damage.  相似文献   
949.
Journal of Plant Research - Bio-energy crops need to be grown on marginal salt and drought lands in India as per policy. Understanding environmental stress response in bio-energy crops might help...  相似文献   
950.
Vibrio cholerae is a noninvasive intestinal pathogen extensively studied as the causative agent of the human disease cholera. Our recent work identified MakA as a potent virulence factor of V. cholerae in both Caenorhabditis elegans and zebrafish, prompting us to investigate the potential contribution of MakA to pathogenesis also in mammalian hosts. In this study, we demonstrate that the MakA protein could induce autophagy and cytotoxicity of target cells. In addition, we observed that phosphatidic acid (PA)-mediated MakA-binding to the host cell plasma membranes promoted macropinocytosis resulting in the formation of an endomembrane-rich aggregate and vacuolation in intoxicated cells that lead to induction of autophagy and dysfunction of intracellular organelles. Moreover, we functionally characterized the molecular basis of the MakA interaction with PA and identified that the N-terminal domain of MakA is required for its binding to PA and thereby for cell toxicity. Furthermore, we observed that the ΔmakA mutant outcompeted the wild-type V. cholerae strain A1552 in the adult mouse infection model. Based on the findings revealing mechanistic insights into the dynamic process of MakA-induced autophagy and cytotoxicity we discuss the potential role played by the MakA protein during late stages of cholera infection as an anti-colonization factor.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号