首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   351篇
  免费   32篇
  国内免费   1篇
  384篇
  2023年   2篇
  2022年   5篇
  2021年   9篇
  2020年   7篇
  2019年   4篇
  2018年   7篇
  2017年   9篇
  2016年   15篇
  2015年   13篇
  2014年   17篇
  2013年   25篇
  2012年   23篇
  2011年   26篇
  2010年   18篇
  2009年   19篇
  2008年   11篇
  2007年   14篇
  2006年   14篇
  2005年   21篇
  2004年   20篇
  2003年   13篇
  2002年   14篇
  2000年   2篇
  1999年   4篇
  1998年   7篇
  1996年   5篇
  1994年   1篇
  1993年   3篇
  1992年   5篇
  1991年   2篇
  1990年   3篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1986年   4篇
  1985年   3篇
  1984年   1篇
  1983年   3篇
  1982年   2篇
  1981年   2篇
  1980年   3篇
  1977年   2篇
  1976年   3篇
  1974年   3篇
  1973年   3篇
  1972年   2篇
  1968年   1篇
  1965年   1篇
  1964年   2篇
  1961年   2篇
排序方式: 共有384条查询结果,搜索用时 15 毫秒
171.
Previous kinetic investigations of the N-terminal RNA Recognition Motif (RRM) domain of spliceosomal A protein of the U1 small nuclear ribonucleoprotein particle (U1A) interacting with its RNA target U1 hairpin II (U1hpII) provided experimental evidence for a ‘lure and lock’ model of binding. The final step of locking has been proposed to involve conformational changes in an α-helix immediately C-terminal to the RRM domain (helix C), which occludes the RNA binding surface in the unbound protein. Helix C must shift its position to accommodate RNA binding in the RNA–protein complex. This results in a new hydrophobic core, an intraprotein hydrogen bond and a quadruple stacking interaction between U1A and U1hpII. Here, we used a surface plasmon resonance-based biosensor to gain mechanistic insight into the role of helix C in mediating the interaction with U1hpII. Truncation, removal or disruption of the helix exposes the RNA-binding surface, resulting in an increase in the association rate, while simultaneously reducing the ability of the complex to lock, reflected in a loss of complex stability. Disruption of the quadruple stacking interaction has minor kinetic effects when compared with removal of the intraprotein hydrogen bonds. These data provide new insights into the mechanism whereby sequences C-terminal to an RRM can influence RNA binding.  相似文献   
172.
Ultrastructure of the eye of a euphausiid crustacean   总被引:1,自引:0,他引:1  
The compound eye of the Antarctic euphausiid Euphausia superba is a spherical clear zone eye. The dioptric system consists of a hexagonally-faceted cornea, two corneagenous cells, two crystalline cone cells which form the bipartite crystalline cone, and two accessory cone cells. The dioptric system of each ommatidium is separated from that of adjacent ommatidia by six distal pigment cells and a basement membrane. The proximal tip of the crystalline cone is cupped by the distal ends of the seven retinula cells whose nuclei are arranged in a staggered array slightly distal to the middle of the clear zone. In the distal half of the clear zone, each narrow retinula cell column is surrounded by large proximal extensions of the six distal pigment cells. The pigment cells narrow more proximally and terminate at the proximal basement membrane. A specialized axial channel complex extends from the crystalline cone through the clear zone, and is continuous with a conical refractive element which caps the distal end of the rhabdom. The rhabdom is fused, and made up of alternating highly birefringent layers of orthogonally-oriented microvilli. It is surrounded by a narrow extra-cellular space which is continuous with the distal refractive element and a second conical refractive element at the proximal end of the rhabdom.  相似文献   
173.
An expanding appreciation for the varied functions of neutral lipids in cellular organisms relies on a more detailed understanding of the mechanisms of lipid production and packaging into cytosolic lipid droplets (LDs). Conventional lipid profiling procedures involve the analysis of tissue extracts and consequently lack cellular or subcellular resolution. Here, we report an approach that combines the visualization of individual LDs, microphase extraction of lipid components from droplets, and the direct identification of lipid composition by nanospray mass spectrometry, even to the level of a single LD. The triacylglycerol (TAG) composition of LDs from several plant sources (mature cotton (Gossypium hirsutum) embryos, roots of cotton seedlings, and Arabidopsis thaliana seeds and leaves) were examined by direct organelle mass spectrometry and revealed the heterogeneity of LDs derived from different plant tissue sources. The analysis of individual LDs makes possible organellar resolution of molecular compositions and will facilitate new studies of LD biogenesis and functions, especially in combination with analysis of morphological and metabolic mutants. Furthermore, direct organelle mass spectrometry could be applied to the molecular analysis of other subcellular compartments and macromolecules.  相似文献   
174.
We have compared the fluidity of thylakoid membranes with the membrane present in a Triton X-100-derived, oxygen-evolving Photosystem II (PS II) preparation using two different spin labels. Data obtained with 2,2,6,6-tetramethylpipiridine-N-oxyl (TEMPO) shows that the PS II preparation contains less fluid membrane than the thylakoid. The TEMPO partition parameter (f) is about 2.5-times greater for the thylakoids at 6 mg chlorophyll/ml than for the PS II preparation at the same chlorophyll concentration. Similarly, the rotational correlation time, τ, of TEMPO residing in the membrane of the PS II preparation is about 2-times longer than the τ for TEMPO in the thylakoid membrane. A spin label which partitions more completely into the bilayer, 2-heptyl-2-hexyl-5,5-dimethyloxazolidine-N-oxyl (7N14), indicates a much greater fluidity in the thylakoid membrane than the membrane of the PS II preparation. The PS II preparation appears to have a hydrocarbon phase which approaches the rigid limit of EPR detectable motion. These results are discussed in terms of possible lipid depletion in the PS II preparation and in terms of lateral heterogeneity of hydrocarbon fluidity in the thylakoid membrane caused by the lateral heterogeneity in protein components.  相似文献   
175.
The aim of this investigation was to determine the persistence of biofilm-associated antibiotic resistance developed by methicillin-sensitive Staphylococcus aureus (MSSA), of different capsular types, during biofilm formation. Because of superiority of the tissue culture plate (TCP) over the Congo Red Agar (CRA) method for measuring biofilm formation, it was used to determine the persistence of the antibiotic resistance developed by the isolates in biofilms. The antibiotic resistance was found to persist for 3–4 wk post-propagation as planktonic subcultures. Interestingly, some strains even developed resistance to vancomycin and/or teicoplanin. However, no association of either biofilm formation or persistent antibiotic resistance with the major capsular phenotype was observed. These observations highlight the potential significance of (a) determining the antibiograms of S. aureus subcultured from biofilms developed in vitro using the TCP method as well as from planktonic cultures for formulation of an optimal therapeutic strategy, and (b) continuing to identify predominant non-capsular antigens contributing to biofilm formation, regardless of the capsular phenotype for the development of an effective potentially broad-spectrum vaccine for prevention of bovine mastitis caused by S. aureus.  相似文献   
176.
177.
178.
179.
Molecular mapping of cultivated oats was conducted to update the previous reference map constructed using a recombinant inbred (RI) population derived from Avena byzantina C. Koch cv. Kanota x Avena sativa L. cv. Ogle. In the current work, 607 new markers were scored, many on a larger set of RI lines (133 vs. 71) than previously reported. A robust, updated framework map was developed to resolve linkage associations among 286 markers. The remaining 880 markers were placed individually within the most likely framework interval using chi2 tests. This molecular framework incorporates and builds on previous studies, including physical mapping and linkage mapping in additional oat populations. The resulting map provides a common tool for use by oat researchers concerned with structural genomics, functional genomics, and molecular breeding.  相似文献   
180.
Kashin-Beck disease, a syndrome characterized by short stature, skeletal deformities, and arthropathy of multiple joints, is highly prevalent in specific regions of Asia. The disease has been postulated to result from a combination of different environmental factors, including contamination of barley by mold mycotoxins, iodine deficiency, presence of humic substances in drinking water, and, importantly, deficiency of selenium. This multifunctional trace element, in the form of selenocysteine, is essential for normal selenoprotein function, including attenuation of excessive oxidative stress, and for the control of redox-sensitive molecules involved in cell growth and differentiation. To investigate the effects of skeletal selenoprotein deficiency, a Cre recombinase transgenic mouse line was used to trigger Trsp gene deletions in osteo-chondroprogenitors. Trsp encodes selenocysteine tRNA[Ser]Sec, required for the incorporation of selenocysteine residues into selenoproteins. The mutant mice exhibited growth retardation, epiphyseal growth plate abnormalities, and delayed skeletal ossification, as well as marked chondronecrosis of articular, auricular, and tracheal cartilages. Phenotypically, the mice thus replicated a number of the pathological features of Kashin-Beck disease, supporting the notion that selenium deficiency is important to the development of this syndrome.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号