首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   151篇
  免费   16篇
  2021年   2篇
  2019年   1篇
  2017年   1篇
  2016年   1篇
  2015年   6篇
  2014年   4篇
  2013年   6篇
  2012年   5篇
  2011年   4篇
  2010年   5篇
  2009年   7篇
  2008年   5篇
  2007年   6篇
  2006年   1篇
  2005年   3篇
  2004年   1篇
  2003年   5篇
  2001年   5篇
  2000年   5篇
  1999年   7篇
  1998年   4篇
  1996年   4篇
  1995年   3篇
  1994年   2篇
  1993年   2篇
  1992年   4篇
  1991年   3篇
  1990年   2篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1986年   5篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   8篇
  1980年   2篇
  1979年   10篇
  1978年   11篇
  1977年   4篇
  1975年   1篇
  1974年   5篇
  1973年   1篇
  1971年   3篇
  1969年   1篇
  1967年   1篇
  1966年   1篇
排序方式: 共有167条查询结果,搜索用时 15 毫秒
11.
Atopic allergy is characterized by an increase in IgE antibodies that signal through the high-affinity Fcepsilon receptor (FcepsilonRI) to induce the release of inflammatory mediators from mast cells. For unknown reasons, the prevalence of allergic diseases has recently increased steeply in the developed world. However, this increase has not been mirrored in developing countries, even though IgE concentrations are often greatly elevated in individuals from these countries, owing to nonspecific IgE induction by universally present parasitic worms. Here we offer one explanation for this paradox based on the properties of ES-62, a molecule secreted by filarial nematodes. We found that highly purified, endotoxin-free ES-62 directly inhibits the FcepsilonRI-induced release of allergy mediators from human mast cells by selectively blocking key signal transduction events, including phospholipase D-coupled, sphingosine kinase-mediated calcium mobilization and nuclear factor-kappaB activation. ES-62 mediates these effects by forming a complex with Toll-like receptor 4, which results in the sequestration of protein kinase C-alpha (PKC-alpha). This causes caveolae/lipid raft-mediated, proteasome-independent degradation of PKC-alpha, a molecule important for the coupling of FcepsilonRI to phospholipase D and mast cell activation. We also show that ES-62 is able to protect mice from mast cell-dependent hypersensitivity in the skin and lungs, indicating that it has potential as a novel therapeutic for allergy.  相似文献   
12.
13.
14.

Background

Receptors with a single transmembrane (TM) domain are essential for the signal transduction across the cell membrane. NMR spectroscopy is a powerful tool to study structure of the single TM domain. The expression and purification of a TM domain in Escherichia coli (E.coli) is challenging due to its small molecular weight. Although ketosteroid isomerase (KSI) is a commonly used affinity tag for expression and purification of short peptides, KSI tag needs to be removed with the toxic reagent cyanogen bromide (CNBr).

Result

The purification of the TM domain of p75 neurotrophin receptor using a KSI tag with the introduction of a thrombin cleavage site is described herein. The recombinant fusion protein was refolded into micelles and was cleaved with thrombin. Studies showed that purified protein could be used for structural study using NMR spectroscopy.

Conclusions

These results provide another strategy for obtaining a single TM domain for structural studies without using toxic chemical digestion or acid to remove the fusion tag. The purified TM domain of p75 neurotrophin receptor will be useful for structural studies.  相似文献   
15.

Background

In the last years, the biotechnological production of platform chemicals for fuel components has become a major focus of interest. Although ligno-cellulosic material is considered as suitable feedstock, the almost inevitable pretreatment of this recalcitrant material may interfere with the subsequent fermentation steps. In this study, the fungus Ustilago maydis was used to produce itaconic acid as platform chemical for the synthesis of potential biofuels such as 3-methyltetrahydrofuran. No studies, however, have investigated how pretreatment of ligno-cellulosic biomass precisely influences the subsequent fermentation by U. maydis. Thus, this current study aims to first characterize U. maydis in shake flasks and then to evaluate the influence of three exemplary pretreatment methods on the cultivation and itaconic acid production of this fungus. Cellulose enzymatically hydrolysed in seawater and salt-assisted organic-acid catalysed cellulose were investigated as substrates. Lastly, hydrolysed hemicellulose from fractionated beech wood was applied as substrate.

Results

U. maydis was characterized on shake flask level regarding its itaconic acid production on glucose. Nitrogen limitation was shown to be a crucial condition for the production of itaconic acid. For itaconic acid concentrations above 25 g/L, a significant product inhibition was observed. Performing experiments that simulated influences of possible pretreatment methods, U. maydis was only slightly affected by high osmolarities up to 3.5 osmol/L as well as of 0.1 M oxalic acid. The production of itaconic acid was achieved on pretreated cellulose in seawater and on the hydrolysed hemicellulosic fraction of pretreated beech wood.

Conclusion

The fungus U. maydis is a promising producer of itaconic acid, since it grows as single cells (yeast-like) in submerged cultivations and it is extremely robust in high osmotic media and real seawater. Moreover, U. maydis can grow on the hemicellulosic fraction of pretreated beech wood. Thereby, this fungus combines important advantages of yeasts and filamentous fungi. Nevertheless, the biomass pretreatment does indeed affect the subsequent itaconic acid production. Although U. maydis is insusceptible to most possible impurities from pretreatment, high amounts of salts or residues of organic acids can slow microbial growth and decrease the production. Consequently, the pretreatment step needs to fit the prerequisites defined by the actual microorganisms applied for fermentation.  相似文献   
16.

Background

Due partly to physicians’ unawareness, many adults with Pompe disease are diagnosed with great delay. Besides, it is not well known which factors influence the rate of disease progression, and thus disease outcome. We delineated the specific clinical features of Pompe disease in adults, and mapped out the distribution and severity of muscle weakness, and the sequence of involvement of the individual muscle groups. Furthermore, we defined the natural disease course and identified prognostic factors for disease progression.

Methods

We conducted a single-center, prospective, observational study. Muscle strength (manual muscle testing, and hand-held dynamometry), muscle function (quick motor function test), and pulmonary function (forced vital capacity in sitting and supine positions) were assessed every 3–6 months and analyzed using repeated-measures ANOVA.

Results

Between October 2004 and August 2009, 94 patients aged between 25 and 75 years were included in the study. Although skeletal muscle weakness was typically distributed in a limb-girdle pattern, many patients had unfamiliar features such as ptosis (23%), bulbar weakness (28%), and scapular winging (33%). During follow-up (average 1.6 years, range 0.5-4.2 years), skeletal muscle strength deteriorated significantly (mean declines of ?1.3% point/year for manual muscle testing and of ?2.6% points/year for hand-held dynamometry; both p<0.001). Longer disease duration (>15 years) and pulmonary involvement (forced vital capacity in sitting position <80%) at study entry predicted faster decline. On average, forced vital capacity in supine position deteriorated by 1.3% points per year (p=0.02). Decline in pulmonary function was consistent across subgroups. Ten percent of patients declined unexpectedly fast.

Conclusions

Recognizing patterns of common and less familiar characteristics in adults with Pompe disease facilitates timely diagnosis. Longer disease duration and reduced pulmonary function stand out as predictors of rapid disease progression, and aid in deciding whether to initiate enzyme replacement therapy, or when.
  相似文献   
17.
Adenoviruses (Ad) with the early region E4 deleted (E4-deleted virus) are defective for DNA replication and late protein synthesis. Infection with E4-deleted viruses results in activation of a DNA damage response, accumulation of cellular repair factors in foci at viral replication centers, and joining together of viral genomes into concatemers. The cellular DNA repair complex composed of Mre11, Rad50, and Nbs1 (MRN) is required for concatemer formation and full activation of damage signaling through the protein kinases Ataxia-telangiectasia mutated (ATM) and ATM-Rad3-related (ATR). The E4orf3 and E4orf6 proteins expressed from the E4 region of Ad type 5 (Ad5) inactivate the MRN complex by degradation and mislocalization, and prevent the DNA damage response. Here we investigated individual contributions of the MRN complex, concatemer formation, and damage signaling to viral DNA replication during infection with E4-deleted virus. Using virus mutants, short hairpin RNA knockdown and hypomorphic cell lines, we show that inactivation of MRN results in increased viral replication. We demonstrate that defective replication in the absence of E4 is not due to concatemer formation or DNA damage signaling. The C terminus of Nbs1 is required for the inhibition of Ad DNA replication and recruitment of MRN to viral replication centers. We identified regions of Nbs1 that are differentially required for concatemer formation and inhibition of Ad DNA replication. These results demonstrate that targeting of the MRN complex explains the redundant functions of E4orf3 and E4orf6 in promoting Ad DNA replication. Understanding how MRN impacts the adenoviral life cycle will provide insights into the functions of this DNA damage sensor.  相似文献   
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号