首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   360篇
  免费   23篇
  383篇
  2021年   3篇
  2020年   3篇
  2018年   2篇
  2017年   3篇
  2016年   3篇
  2015年   9篇
  2014年   9篇
  2013年   16篇
  2012年   17篇
  2011年   13篇
  2010年   12篇
  2009年   16篇
  2008年   9篇
  2007年   14篇
  2006年   16篇
  2005年   20篇
  2004年   14篇
  2003年   8篇
  2002年   5篇
  2001年   18篇
  2000年   14篇
  1999年   12篇
  1998年   4篇
  1997年   3篇
  1996年   6篇
  1995年   5篇
  1994年   5篇
  1993年   3篇
  1992年   5篇
  1991年   5篇
  1990年   2篇
  1989年   5篇
  1988年   2篇
  1986年   10篇
  1985年   3篇
  1984年   6篇
  1982年   3篇
  1981年   9篇
  1980年   4篇
  1979年   12篇
  1978年   12篇
  1977年   9篇
  1976年   3篇
  1974年   6篇
  1973年   3篇
  1971年   3篇
  1969年   2篇
  1967年   2篇
  1953年   1篇
  1952年   2篇
排序方式: 共有383条查询结果,搜索用时 0 毫秒
61.

Introduction  

Interleukin-1 (IL-1) and tumor necrosis factor-α (TNF-α) are up-regulated in injured and osteoarthritic knee joints. IL-1 and TNF-α inhibit integrative meniscal repair; however, the mechanisms by which this inhibition occurs are not fully understood. Transforming growth factor-β1 (TGF-β1) increases meniscal cell proliferation and accumulation, and enhances integrative meniscal repair. An improved understanding of the mechanisms modulating meniscal cell proliferation and migration will help to improve approaches for enhancing intrinsic or tissue-engineered repair of the meniscus. The goal of this study was to examine the hypothesis that IL-1 and TNF-α suppress, while TGF-β1 enhances, cellular proliferation and migration in cell and tissue models of meniscal repair.  相似文献   
62.
Perry  CT  Kench  PS  Smithers  SG  Riegl  BR  Gulliver  P  Daniells  JJ 《Coral reefs (Online)》2017,36(3):1013-1021

Low-lying coral reef islands are considered highly vulnerable to climate change, necessitating an improved understanding of when and why they form, and how the timing of formation varies within and among regions. Several testable models have been proposed that explain inter-regional variability as a function of sea-level history and, more recently, a reef platform size model has been proposed from the Maldives (central Indian Ocean) to explain intra-regional (intra-atoll) variability. Here we present chronostratigraphic data from Pipon Island, northern Great Barrier Reef (GBR), enabling us to test the applicability of existing regional island evolution models, and the platform size control hypothesis in a Pacific context. We show that reef platform infilling occurred rapidly (~4–5 mm yr−1) under a “bucket-fill” type scenario. Unusually, this infilling was dominated by terrigenous sedimentation, with platform filling and subsequent reef flat formation complete by ~5000 calibrated years BP (cal BP). Reef flat exposure as sea levels slowly fell post highstand facilitated a shift towards intertidal and subaerial-dominated sedimentation. Our data suggest, however, a lag of ~1500 yr before island initiation (at ~3200 cal BP), i.e. later than that reported from smaller and more evolutionarily mature reef platforms in the region. Our data thus support: (1) the hypothesis that platform size acts to influence the timing of platform filling and subsequent island development at intra-regional scales; and (2) the hypothesis that the low wooded islands of the northern GBR conform to a model of island formation above an elevated reef flat under falling sea levels.

  相似文献   
63.
IQGAP1 promotes neurite outgrowth in a phosphorylation-dependent manner   总被引:2,自引:0,他引:2  
In eukaryotic cells IQGAP1 binds to and alters the function of several proteins, including actin, E-cadherin, beta-catenin, Cdc42, and Rac1. Yeast IQGAP1 homologues have an important role in cytoskeletal organization, suggesting that modulation of the cytoskeleton is a fundamental role of IQGAP1. Phosphorylation is a common mechanism by which cells regulate protein function. Here we demonstrate that endogenous IQGAP1 is highly phosphorylated in MCF-7 human breast epithelial cells. Moreover, incubation of cells with phorbol 12-myristate 13-acetate (PMA) stimulated phosphate incorporation into IQGAP1. By using mass spectrometry, Ser-1443 was identified as the major site phosphorylated on IQGAP1 in intact cells treated with PMA. Ser-1441 was also phosphorylated but to a lesser extent. In vitro analysis with purified proteins documented that IQGAP1 is a substrate for protein kinase Cepsilon, which catalyzes phosphorylation on Ser-1443. Consistent with these findings, inhibition of cellular protein kinase C via bisindolymaleimide abrogated Ser-1443 phosphorylation in response to PMA. To elucidate the biological sequelae of phosphorylation, Ser-1441 and Ser-1443 were converted either to alanine, to create a nonphosphorylatable construct, or to glutamic acid and aspartic acid, respectively, to generate a phosphomimetic IQGAP1. Although overexpression of wild type IQGAP1 promoted neurite outgrowth in N1E-115 neuroblastoma cells, the nonphosphorylatable IQGAP1 S1441A/S1443A had no effect. In contrast, the S1441E/S1443D mutation markedly enhanced the ability of IQGAP1 to induce neurite outgrowth. Our data disclose that IQGAP1 is phosphorylated at multiple sites in intact cells and that phosphorylation of IQGAP1 will alter its ability to regulate the cytoskeleton of neuronal cells.  相似文献   
64.
The epithelial sodium channel (ENaC) is composed of three homologous subunits termed alpha, beta, and gamma. Previous studies suggest that selected residues within a hydrophobic region immediately preceding the second membrane-spanning domain of each subunit contribute to the conducting pore of ENaC. We probed the pore of mouse ENaC by systematically mutating all 24 amino acids within this putative pore region of the alpha-subunit to cysteine and co-expressing these mutants with wild type beta- and gamma-subunits of mouse ENaC in Xenopus laevis oocytes. Functional characteristics of these mutants were examined by two-electrode voltage clamp and single channel recording techniques. Two distinct domains were identified based on the functional changes associated with point mutations. An amino-terminal domain (alpha-Val(569)-alpha-Gly(579)) showed minimal changes in cation selectivity or amiloride sensitivity following cysteine substitution. In contrast, cysteine substitutions within the carboxyl-terminal domain (alpha-Ser(580)-alpha-Ser(592)) resulted in significant changes in cation selectivity and moderately altered amiloride sensitivity. The mutant channels containing alphaG587C or alphaS589C were permeable to K(+), and mutation of a GSS tract (positions alpha587-alpha589) to GYG resulted in a moderately K(+)-selective channel. Our results suggest that the C-terminal portion of the pore region within the alpha-subunit contributes to the selectivity filter of ENaC.  相似文献   
65.
66.
67.
68.
Profiles of pineal indolealkylamines were estimated by high performance liquid chromatography and were correlated in individual glands of male rats sacrificed over several light:dark cycles and after acute exposure to light at night. A significant and positive correlation of 5HIAA vs 5HT in individual glands over both normal and experimental lighting conditions suggested that oxidative deamination is not a major factor in photic regulation of pineal 5HT levels and that the formation of 5HIAA is dependent on substrate availability. Regression analysis of other indole constituents revealed that there was a positive and significant correlation between 5HT vs N-acetylserotonin, but not between 5HT vs melatonin and N-acetylserotonin vs melatonin in individual glands during the dark phase of a light:dark cycle. We propose that this effect may be related to a pulsatile release of melatonin into the blood stream and is the result of sampling glands at different stages in the storage/release of melatonin.  相似文献   
69.
70.
A dramatic difference is observed in the intracellular distribution of the high mobility group (HMG) proteins when chicken embryo fibroblasts are fractionated into nucleus and cytoplasm by either mass enucleation of cytochalasin-B-treated cells or by differential centrifugation of mechanically disrupted cells. Nuclei (karyoplasts) obtained by cytochalasin B treatment of cells contain more than 90 percent of the HMG 1, while enucleated cytoplasts contain the remainder. A similar distribution between karyoplasts and cytoplasts is observed for the H1 histones and the nucleosomal core histones as anticipated. The presence of these proteins, in low amounts, in the cytoplast preparation can be accounted for by the small percentage of unenucleated cells present. In contrast, the nuclei isolated from mechanically disrupted cells contain only 30-40 percent of the total HMGs 1 and 2, the remainder being recovered in the cytosol fraction. No histone is observed in the cytosol fraction. Unike the higher molecular weight HMGs, most of the HMGs 14 and 17 sediment with the nuclei after cell lysis by mechanical disruption. The distribution of HMGs is unaffected by incubating cells with cytochalasin B and mechanically fractionating rather than enucleating them. Therefore, the dramatic difference in HMG 1 distribution observed using the two fractionation techniques cannot be explained by a cytochalasin-B-induced redistribution. On reextraction and sedimentation of isolated nuclei obtained by mechanical cell disruption, only 8 percent of the HMG 1 is released to the supernate. Thus, the majority of the HMG 1 originally isolated with these nuclei, representing 35 percent of the total HMG 1, is stably bound, as is all the HMGs 14 and 17. The remaining 65 percent of the HMGs 1 and 2 is unstably bound and leaks to the cytosol fraction under the conditions of mechanical disruption. It is suggested that the unstably bound HMGs form a protein pool capable of equilibrating between cytoplasm and stably bound HMGs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号