首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   159篇
  免费   12篇
  2023年   2篇
  2020年   3篇
  2017年   2篇
  2016年   2篇
  2014年   4篇
  2013年   3篇
  2012年   5篇
  2011年   2篇
  2010年   5篇
  2008年   4篇
  2007年   3篇
  2006年   5篇
  2005年   3篇
  2004年   4篇
  2001年   4篇
  1999年   6篇
  1998年   3篇
  1997年   7篇
  1996年   5篇
  1995年   6篇
  1994年   3篇
  1993年   1篇
  1992年   3篇
  1991年   1篇
  1990年   5篇
  1989年   7篇
  1988年   2篇
  1987年   6篇
  1986年   3篇
  1985年   3篇
  1984年   2篇
  1983年   2篇
  1981年   4篇
  1980年   3篇
  1979年   2篇
  1978年   3篇
  1977年   3篇
  1975年   2篇
  1973年   4篇
  1972年   1篇
  1971年   3篇
  1970年   5篇
  1969年   8篇
  1968年   2篇
  1967年   2篇
  1966年   1篇
  1965年   4篇
  1964年   1篇
  1963年   2篇
  1901年   1篇
排序方式: 共有171条查询结果,搜索用时 31 毫秒
21.
Molecular analysis of grassland rhizosphere soil has demonstrated complex and diverse bacterial communities, with resultant difficulties in detecting links between plant and bacterial communities. These studies have, however, analyzed "bulk" rhizosphere soil, rather than rhizoplane communities, which interact most closely with plants through utilization of root exudates. The aim of this study was to test the hypothesis that plant species was a major driver for bacterial rhizoplane community composition on individual plant roots. DNA extracted from individual roots was used to determine plant identity, by analysis of the plastid tRNA leucine (trnL) UAA gene intron, and plant-related bacterial communities. Bacterial communities were characterized by analysis of PCR-amplified 16S rRNA genes using two fingerprinting methods: terminal restriction fragment length polymorphisms (T-RFLP) and denaturing gradient gel electrophoresis (DGGE). Links between plant and bacterial rhizoplane communities could not be detected by visual examination of T-RFLP patterns or DGGE banding profiles. Statistical analysis of fingerprint patterns did not reveal a relationship between bacterial community composition and plant species but did demonstrate an influence of plant community composition. The data also indicated that topography and other, uncharacterized, environmental factors are important in driving bacterial community composition in grassland soils. T-RFLP had greater potential resolving power than DGGE, but findings from the two methods were not significantly different.  相似文献   
22.
Proteomic analysis of the potato tuber life cycle   总被引:1,自引:0,他引:1  
The tuber of potato (Solanum tuberosum) is commonly used as a model for underground storage organs. In this study, changes in the proteome were followed from tuberization, through tuber development and storage into the sprouting phase. Data interrogation using principal component analysis was able to clearly discriminate between the various stages of the tuber life cycle. Moreover, five well-defined protein expression patterns were found by hierarchical clustering. Altogether 150 proteins showing highly significant differences in abundance between specific stages in the life cycle were highlighted; 59 of these were identified. In addition, 50 proteins with smaller changes in abundance were identified, including several novel proteins. Most noticeably, the development process was characterized by the accumulation of the major storage protein patatin isoforms and enzymes involved in disease and defense reactions. Furthermore, enzymes involved in carbohydrate and energy metabolism and protein processing were associated with development but decreased during tuber maturation. These results represent the first comprehensive picture of many proteins involved in the tuber development and physiology.  相似文献   
23.
24.
Sheep-urine-induced changes in soil microbial community structure   总被引:1,自引:0,他引:1  
Soil microbial communities play an important role in nutrient cycling and nutrient availability, especially in unimproved soils. In grazed pastures, sheep urine causes local changes in nutrient concentration which may be a source of heterogeneity in microbial community structure. In the present study, we investigated the effects of synthetic urine on soil microbial community structure, using physiological (community level physiological profiling, CLPP), biochemical (phospholipid fatty acid analysis, PLFA) and molecular (denaturing gradient gel electrophoresis, DGGE) fingerprinting methods. PLFA data suggested that synthetic urine treatment had no significant effect on total microbial (total PLFA), total bacterial or fungal biomass; however, significant changes in microbial community structure were observed with both PLFA and DGGE data. PLFA data suggested that synthetic urine induced a shift towards communities with higher concentrations of branched fatty acids. DGGE banding patterns derived from control and treated soils differed, due to a higher proportion of DNA sequences migrating only to the upper regions of the gel in synthetic urine-treated samples. The shifts in community structure measured by PLFA and DGGE were significantly correlated with one another, suggesting that both datasets reflected the same changes in microbial communities. Synthetic urine treatment preferentially stimulated the use of rhizosphere-C in sole-carbon-source utilisation profiles. The changes caused by synthetic urine addition accounted for only 10-15% of the total variability in community structure, suggesting that overall microbial community structure was reasonably stable and that changes were confined to a small proportion of the communities.  相似文献   
25.
? The ionome is the elemental composition of a tissue or organism. Phylogenetic variation in the ionomes of plant shoots has been widely reported based on controlled experiments, vegetation surveys and literature meta-analyses. However, environmental effects on phylogenetic variation in shoot ionomes have not been quantified. This study tests the hypothesis that phylogenetic variation in shoot ionomes is robust to environmental perturbation and that plant families can be distinguished by their shoot ionomes. ? Herbage was sampled from six subplots of the Rothamsted Park Grass Experiment. Subplots had received contrasting fertilizer treatments since 1856. Herbage was separated into its constituent species (n?=?21) and concentrations of eleven mineral elements were determined in dried shoot material. ? Shoot concentrations of calcium (Ca), zinc (Zn), manganese (Mn), magnesium (Mg) and sodium (Na) showed significant variation associated with plant species, and responded similarly to fertilizer treatments in diverse plant species. Species?×?treatment interactions were indicated for phosphorus (P), potassium (K), nickel (Ni), copper (Cu) and iron (Fe). Plant families could be distinguished by their shoot ionomes. The most informative elements for discriminant analysis were Ca?>?Mg?>?Ni?>?S?>?Na?>?Zn?>?K?>?Cu?>?Fe?>?Mn?>?P. ? Whilst shoot ionomes were sensitive to fertilizer treatment, phylogenetic variation in a subset of the shoot ionome (Ca, Zn, Mn, Mg) was robust to this environmental perturbation.  相似文献   
26.
27.
28.
The rapid development of genomic technology has made high throughput genotyping widely accessible but the associated high throughput phenotyping is now the major limiting factor in genetic analysis of traits. This paper evaluates the use of thermal imaging for the high throughput field phenotyping of Solanum tuberosum for differences in stomatal behaviour. A large multi-replicated trial of a potato mapping population was used to investigate the consistency in genotypic rankings across different trials and across measurements made at different times of day and on different days. The results confirmed a high degree of consistency between the genotypic rankings based on relative canopy temperature on different occasions. Genotype discrimination was enhanced both through normalising data by expressing genotype temperatures as differences from image means and through the enhanced replication obtained by using overlapping images. A Monte Carlo simulation approach was used to confirm the magnitude of genotypic differences that it is possible to discriminate. The results showed a clear negative association between canopy temperature and final tuber yield for this population, when grown under ample moisture supply. We have therefore established infrared thermography as an easy, rapid and non-destructive screening method for evaluating large population trials for genetic analysis. We also envisage this approach as having great potential for evaluating plant response to stress under field conditions.  相似文献   
29.
The use of AFLPs to examine genetic relatedness in barley   总被引:7,自引:0,他引:7  
The generation of AFLPs in spring barley cultivars provided genetic information relating to the development of the crop in the UK since 1953. Principal co-ordinate (PCO) analysis of genetic similarities (gs) confirmed the marked contrast in the cultivars used in the 1970s and 1980s. The earliest cultivars, many derived from Proctor, were succeeded by tall-strawed, disease-resistant types with high yield but poor malting potential. In the 1980s they were in turn replaced by short-strawed cultivars with excellent yield and good malting quality, which originated from Triumph. A PCO plot of gs provided insight into the effects of selection for disease resistance and the antagonism between malting quality and particular resistance genes. The analysis of gs was more useful than pedigrees and estimates of kinship in revealing the genetic relationship between cultivars. Theoretical considerations for maximising the efficiency of an AFLP genotyping programme are discussed in the context of the number of primer pairs required to distinguish genotypes at varying levels of similarity.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号