首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   85篇
  免费   15篇
  2021年   2篇
  2018年   1篇
  2016年   1篇
  2015年   6篇
  2014年   6篇
  2013年   7篇
  2012年   6篇
  2011年   2篇
  2010年   3篇
  2009年   5篇
  2008年   6篇
  2007年   6篇
  2006年   6篇
  2004年   5篇
  2003年   1篇
  2002年   5篇
  2001年   2篇
  2000年   1篇
  1999年   4篇
  1997年   4篇
  1996年   3篇
  1994年   1篇
  1993年   1篇
  1992年   5篇
  1991年   2篇
  1990年   2篇
  1988年   1篇
  1987年   1篇
  1984年   1篇
  1977年   1篇
  1974年   2篇
  1972年   1篇
排序方式: 共有100条查询结果,搜索用时 15 毫秒
21.
eNOS (endothelial nitric oxide synthase) contains a MAPK (mitogen-activated protein kinase)-binding site associated with a major eNOS control element. Purified ERK (extracellular-signal-regulated kinase) phosphorylates eNOS with a stoichiometry of 2–3 phosphates per eNOS monomer. Phosphorylation decreases NO synthesis and cytochrome c reductase activity. Three sites of phosphorylation were detected by MS. All sites matched the SP and TP MAPK (mitogen-activated protein kinase) phosphorylation motif. Ser602 lies at the N-terminal edge of the 42-residue eNOS AI (autoinhibitory) element. The pentabasic MAPK-binding site lies at the opposite end of the AI, and other critical regulatory features are between them. Thr46 and Ser58 are located in a flexible region associated with the N terminus of the oxygenase domain. In contrast with PKC (protein kinase C), phosphorylation by ERK did not significantly interfere with CaM (calmodulin) binding as analysed by optical biosensing. Instead, ERK phosphorylation favours a state in which FMN and FAD are in close association and prevents conformational changes that expose reduced FMN to acceptors. The close associations between control sites in a few regions of the molecule suggest that control of signal generation is modulated by multiple inputs interacting directly on the surface of eNOS via overlapping binding domains and tightly grouped targets.  相似文献   
22.

Background

QuantiFERON-TB Gold In-Tube (QFT) is an IFNγ-release assay used in the diagnosis of Mycobacterium tuberculosis (MTB) infection. The risk of TB progression increases with the magnitude of the MTB-specific IFNγ-response. QFT reversion, also associated with low Tuberculin Skin Test responses, may therefore represent a transient immune response with control of M. tuberculosis infection. However, studies at the single cell level have suggested that the quality (polyfunctionality) of the T-cell response is more important than the quantity of cytokines produced.

Objective

To explore the quality and/or magnitude of mycobacteria-specific T-cell responses associated with QFT reversion and persistent QFT-positivity.

Methods

Multi-color flowcytometry on prospectively collected peripheral blood mononuclear cells was applied to assess mycobacteria-specific T-cell responses in 42 QFT positive Indian adolescents of whom 21 became QFT negative (reverters) within one year. Ten QFT consistent negatives were also included as controls.

Results

There was no difference in the qualitative PPD-specific CD4+ T-cell response between QFT consistent positives and reverters. However, compared with QFT consistent positives, reverters displayed lower absolute frequencies of polyfunctional (IFNγ+IL2+TNFα+) CD4+ T-cells at baseline, which were further reduced to the point where they were not different to QFT negative controls one year later. Moreover, absolute frequencies of these cells correlated well with the magnitude of the QFT-response.

Conclusion

Whereas specific polyfunctional CD4+ T-cells have been suggested to protect against TB progression, our data do not support that higher relative or absolute frequencies of PPD-specific polyfunctional CD4+ T-cells in peripheral blood can explain the reduced risk of TB progression observed in QFT reverters. On the contrary, absolute frequencies of these cells correlated with the QFT-response, suggesting that this readout reflects antigenic load.  相似文献   
23.
The aspartate 15 residue within the first predicted intramembrane helix of the tetracycline efflux protein Tet has been conserved in four tetracycline resistance determinants from gram-negative bacteria. Its replacement in class B Tet by tyrosine, histidine, or asparagine resulted in a 60 to 85% loss of tetracycline resistance and a similar loss of tetracycline-proton antiport. The tyrosine and histidine substitutions lowered the Vmax of the efflux system by some 90% but did not alter the Km. The asparagine substitution raised the Km over 13-fold, while the Vmax was equal to or greater than that of the wild type. Therefore, although the nature of its role is unclear, aspartate 15 is important for normal Tet function.  相似文献   
24.
The influence of five brush management treatments using the herbicides tebuthiuron and triclopyr, with or without prescribed burning, on the intestinal helminth community of cottontail rabbits (Sylvilagus floridanus) was studied in 1987 on the Cross Timbers Experimental Range in Payne County, Oklahoma (USA). Six helminth species were found (Dermatoxys veligera, Trichostrongylus calcaratus, Passalurus nonanulatus, Wellcomia longejector, Taenia pisiformis cystercercus, and Mosgovoyia pectinata americana) in 102 rabbits (88 adult and 14 juveniles) collected over two seasons (winter and summer). Prevalence of M. pectinata americana in cottontail rabbits was significantly greater in untreated control pastures than herbicide treated pastures in winter, while prevalence of T. pisiformis was significantly greater in burned than unburned pastures. Abundances of helminth species in the intestinal tract of cottontail rabbits were unaffected by brush treatments. Mosgovoyia pectinata americana abundance demonstrated a highly significant increase from winter to summer; conversely, abundance of all oxyurid pinworms combined (D. veligera, P. nonanulatus, W. longejector) was significantly higher in winter than summer. Helminth community dynamics were significantly influenced by season, but were unaffected by brush treatments. Habitat modification could have influenced cestode transmission by altering the ecology of invertebrate and vertebrate hosts.  相似文献   
25.
A Tn5 insertional mutation on the Escherichia coli chromosome which caused a severalfold increase in susceptibility to structurally and functionally diverse antibiotics was found to map within the gene for polynucleotide phosphorylase (pnp) and to inactivate this enzyme, which is involved in RNA breakdown. The mutation also decreased the growth rate 10 to 25% and increased the rate of tetracycline uptake about 30%. The hypersensitivity due to the insertion was only partially complemented by a cloned pnp gene.  相似文献   
26.
27.
FliH regulates the flagellar export ATPase FliI, preventing nonproductive ATP hydrolysis. FliH has been shown to stably associate with the C ring protein FliN. Analysis of this complex reveals that FliH is required for FliI localization to the C ring, and thus FliH not only inhibits FliI ATPase activity but also may act to target FliI to the basal body. Quantitative binding studies revealed a KD of 110 nM for FliH binding to FliN. The KD for FliH binding of a FliN variant from a temperature-sensitive nonflagellate fliN point mutant was determined to be 270 nM, suggesting a molecular explanation for its phenotype. Another variant FliN from a temperature-sensitive mutant with a different phenotype displayed binding with an intermediate affinity. Weak export activity in a fliN null mutant was greatly increased by overproduction of FliI, mimicking a previously observed FliH bypass effect and supporting the conclusion that FliN-FliH binding is important for localization of FliI to the C ring and thus the membrane-embedded export apparatus beyond. A model incorporating the present findings is presented.  相似文献   
28.
Many integral membrane proteins contain an amino-terminal segment, often referred to as an N-tail, that is translocated across a membrane. In many cases, translocation of the N-tail is initiated by a cleavable, amino-terminal signal peptide. For N-tail proteins lacking a signal peptide, translocation is initiated by a transmembrane segment that is carboxyl to the translocated segment. The mechanism of membrane translocation of these segments, although poorly understood, has been reported to be independent of the protein secretion machinery. In contrast, here we describe alkaline phosphatase mutants containing artificial transmembrane segments that demonstrate that translocation of a long N-tail across the membrane is dependent upon SecA, SecB, and the electrochemical potential in the absence of a signal peptide. The corresponding mutants containing signal peptides also use the secretion machinery but are less sensitive to inhibition of its components. We present evidence that inhibition of SecA by sodium azide is incomplete even at high concentrations of inhibitor, which suggests why SecA-dependent translocation may not have been detected in other systems. Furthermore, by varying the charge around the transmembrane segment, we find that in the absence of a signal peptide, the orientation of the membrane-bound alkaline phosphatase is dictated by the positive inside rule. However, the presence of a signal peptide is an overriding factor in membrane orientation and renders all mutants in an Nout-Cin orientation.  相似文献   
29.
Most flagellar proteins are exported via a type III export apparatus which, in part, consists of the membrane proteins FlhA, FlhB, FliO, FliP, FliQ, and FliR and is housed within the membrane-supramembrane ring formed by FliF subunits. Salmonella FlhA is a 692-residue integral membrane protein with eight predicted transmembrane spans. Its function is not understood, but it is necessary for flagellar export. We have created mutants in which potentially important sequences were deleted. FlhA lacking the amino-terminal sequence prior to the first transmembrane span failed to complement and was dominant negative, suggesting that the sequence is required for function. Similar effects were seen in a variant lacking a highly conserved domain (FHIPEP) within a putative cytoplasmic loop. Scanning deletion analysis of the cytoplasmic domain (FlhAc) demonstrated that substantially all of FlhAc is required for efficient function. Affinity blotting showed that FlhA interacts with several other export apparatus membrane proteins. The implications of these findings are discussed, and a model of FlhA within the export apparatus is presented.  相似文献   
30.
The structure of the C-terminal region of the third cytoplasmic loop (IC3) of the cannabinoid receptor one (CB1) bound to G(alphai1) has been determined using transferred nuclear Overhauser effects (NOEs). The wild-type IC3 sequence is helical when associated with G(alphai1). In contrast, a peptide containing the amino-acid inversion, Ala(341)-Leu(342) adopts a single turn. These findings correlate with the attenuated G(i) association of CB1 with the Ala(341)-Leu(342) mutation previously observed in vivo and the diminished stimulation of G(alphai1) GTPase activity by the corresponding peptide demonstrated in vitro here. These results, the first to report the structure of a GPCR domain while associated with G protein, imply the C-terminus of CB1 IC3, a region with high-sequence conservation among G-protein coupled receptors, must be helical for efficient coupling and activation of the G(i) protein.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号