首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   283篇
  免费   35篇
  2020年   4篇
  2018年   8篇
  2017年   4篇
  2016年   7篇
  2015年   9篇
  2014年   6篇
  2013年   13篇
  2012年   11篇
  2011年   9篇
  2010年   15篇
  2009年   9篇
  2008年   18篇
  2007年   7篇
  2006年   6篇
  2005年   5篇
  2004年   8篇
  2003年   6篇
  2002年   10篇
  2001年   10篇
  2000年   8篇
  1999年   12篇
  1998年   8篇
  1996年   3篇
  1994年   4篇
  1993年   7篇
  1992年   7篇
  1991年   8篇
  1990年   3篇
  1989年   4篇
  1987年   8篇
  1986年   3篇
  1985年   5篇
  1984年   6篇
  1983年   6篇
  1982年   4篇
  1980年   2篇
  1979年   2篇
  1978年   2篇
  1975年   5篇
  1973年   4篇
  1969年   2篇
  1968年   2篇
  1967年   2篇
  1966年   3篇
  1963年   3篇
  1962年   2篇
  1961年   5篇
  1959年   3篇
  1958年   2篇
  1955年   2篇
排序方式: 共有318条查询结果,搜索用时 15 毫秒
81.

Background

The classical paradigm of liver injury asserts that hepatic stellate cells (HSC) produce, remodel and turnover the abnormal extracellular matrix (ECM) of fibrosis via matrix metalloproteinases (MMPs). In extrahepatic tissues MMP production is regulated by a number of mechanisms including expression of the glycoprotein CD147. Previously, we have shown that CD147 is expressed on hepatocytes but not within the fibrotic septa in cirrhosis [1]. Therefore, we investigated if hepatocytes produce MMPs, regulated by CD147, which are capable of remodelling fibrotic ECM independent of the HSC.

Methods

Non-diseased, fibrotic and cirrhotic livers were examined for MMP activity and markers of fibrosis in humans and mice. CD147 expression and MMP activity were co-localised by in-situ zymography. The role of CD147 was studied in-vitro with siRNA to CD147 in hepatocytes and in-vivo in mice with CCl4 induced liver injury using ãCD147 antibody intervention.

Results

In liver fibrosis in both human and mouse tissue MMP expression and activity (MMP-2, -9, -13 and -14) increased with progressive injury and localised to hepatocytes. Additionally, as expected, MMPs were abundantly expressed by activated HSC. Further, with progressive fibrosis there was expression of CD147, which localised to hepatocytes but not to HSC. Functionally significant in-vitro regulation of hepatocyte MMP production by CD147 was demonstrated using siRNA to CD147 that decreased hepatocyte MMP-2 and -9 expression/activity. Further, in-vivo α-CD147 antibody intervention decreased liver MMP-2, -9, -13, -14, TGF-β and α-SMA expression in CCl4 treated mice compared to controls.

Conclusion

We have shown that hepatocytes produce active MMPs and that the glycoprotein CD147 regulates hepatocyte MMP expression. Targeting CD147 regulates hepatocyte MMP production both in-vitro and in-vivo, with the net result being reduced fibrotic matrix turnover in-vivo. Therefore, CD147 regulation of hepatocyte MMP is a novel pathway that could be targeted by future anti-fibrogenic agents.  相似文献   
82.

Introduction

We sought to investigate the capacity of interleukin (IL)-7 to enhance collagen-induced arthritis and to study by what mechanisms this is achieved.

Methods

Mice received multiple injections with IL-7 or phosphate-buffered saline (PBS) as a control. Arthritis severity and incidence were determined by visual examination of the paws. Joint destruction was determined by assessing radiographs and immunohistochemistry of the ankle joints. Total cellularity and numbers of T-cell and B-cell subsets were assessed, as well as ex vivo production of interferon-γ (IFN-γ), IL-17, and IL-4. Proinflammatory mediators were measured in serum with multianalyte profiling.

Results

IL-7 increased arthritis severity and radiology-assessed joint destruction. This was consistent with IL-7-increased intensity of cell infiltrates, bone erosions, and cartilage damage. Splenic CD19+ B cells and CD19+/GL7+ germinal center B cells, as well as CD4 and CD8 numbers, were increased by IL-7. IL-7 expanded memory T cells, associated with increased percentages of IFN-γ-, IL-4-, and IL-17-producing CD4+ T cells. On antigen restimulation of draining lymph node cells in vitro IL-7 treatment was found to increase IFN-γ and IL-17 production, whereas IL-4 was reduced. IL-7 also increased concentrations of proinflammatory mediators, indicative of T-cell activation (sCD40L), vascular activation (VCAM-1, VEGF), tissue destruction (fibroblast growth factor-basic (FGF-b), LIF), and chemotaxis (MIP-1γ, MIP-3β, lymphotactin, MDC, and MCP-5).

Conclusions

In arthritic mice, IL-7 causes expansion of T and B cells, associated with increased levels of proinflammatory mediators. IL-7 intensifies arthritis severity and joint destruction, accompanied by increased Th1 and Th17 activity. These data indicate that IL-7 could be an important mediator in arthritic conditions and that targeting IL-7 or its receptor represent novel therapeutic strategies.  相似文献   
83.
84.
85.
86.
Neural crest cell (NCC) invasion is a complex sculpting of individual cells into organized migratory streams that lead to organ development along the vertebrate axis. Key to our understanding of how molecular mechanisms modulate the NCC migratory pattern is information about cell behaviors, yet it has been challenging to selectively mark and analyze migratory NCCs in a living embryo. Here, we apply an innovative in vivo strategy to investigate chick NCC behaviors within the rhombomere 4 (r4) migratory stream by combining photoactivation of KikGR and confocal time-lapse analysis of H2B-mRFP1 transfected NCCs. We find that the spatial order of r4 NCC emergence translates into a distal-to-proximal invasion of the 2nd branchial arch. Lead and trailing NCCs display similar average cell speeds and directionalities. Surprisingly, we find that lead NCCs proliferate along the migratory route and grow to outnumber trailing NCCs by nearly 3 to 1. A simple, cell-based computational model reproduces the r4 NCC migratory pattern and predicts the invasion order can be disrupted by slower, less directional lead cells or by environmental noise. Our results suggest a model in which NCC behaviors maintain a spatially-ordered invasion of the branchial arches with differences in cell proliferation between the migratory front and trailing NCCs.  相似文献   
87.
The enteric pathogen Campylobacter jejuni is a highly prevalent yet fastidious bacterium. Biofilms and surface polysaccharides participate in stress survival, transmission, and virulence in C. jejuni; thus, the identification and characterization of novel genes involved in each process have important implications for pathogenesis. We found that C. jejuni reacts with calcofluor white (CFW), indicating the presence of surface polysaccharides harboring β1-3 and/or β1-4 linkages. CFW reactivity increased with extended growth, under 42°C anaerobic conditions, and in a ΔspoT mutant defective for the stringent response (SR). Conversely, two newly isolated dim mutants exhibited diminished CFW reactivity as well as growth and serum sensitivity differences from the wild type. Genetic, biochemical, and nuclear magnetic resonance analyses suggested that differences in CFW reactivity between wild-type and ΔspoT and dim mutant strains were independent of well-characterized lipooligosaccharides, capsular polysaccharides, and N-linked polysaccharides. Targeted deletion of carB downstream of the dim13 mutation also resulted in CFW hyporeactivity, implicating a possible role for carbamoylphosphate synthase in the biosynthesis of this polysaccharide. Correlations between biofilm formation and production of the CFW-reactive polymer were demonstrated by crystal violet staining, scanning electron microscopy, and confocal microscopy, with the C. jejuni ΔspoT mutant being the first SR mutant in any bacterial species identified as up-regulating biofilms. Together, these results provide new insight into genes and processes important for biofilm formation and polysaccharide production in C. jejuni.  相似文献   
88.
The TGF-beta family members are generated as latent pre-pro-polypeptides. The active mature peptides are cleaved from the latent forms by cellular proteases. TGF-beta 1, for instance, is predominantly processed by a substilisin-like proprotein convertase, furin. TGF-beta 2 has a consensus cleavage site for furin and therefore has been presumed to be cleaved by furin. However, TGF-beta 2 is often secreted as the latent form, which appears to be inconsistent with its postulated sensitivity to furin. We report here that both the regular (short) form of TGF-beta2 and its spliced variant with an additional exon (long form) are insensitive to furin. NIH 3T3 and CHO cells were transfected with expression vectors containing the short or long form of TGF-beta 2 or a chimeric TGF-beta consisting of the TGF-beta1 LAP region, the TGF-beta 2 cleavage site and the TGF-beta 2 mature peptide. The constructs included a c-myc epitope tag in the N-terminal region of the mature peptide. The TGF-betas produced by the transfected cells were analyzed with Western blots and immunocytochemistry. The intracellular proteins harvested from these cells were incubated with furin. Furin only inefficiently cleaved both the long and short forms of TGF-beta 2, but efficiently processed the chimeric TGF-beta. This indicates that the insensitivity of both forms of TGF-beta 2 to furin is a consequence of the tertiary structure of their LAP regions rather than their cleavage site. This differential processing of TGF-beta1 and -beta 2 may be part of the mechanism that generates isoform-specific functions of the TGF-betas.  相似文献   
89.
90.
Nep1-like proteins (NLPs) are a novel family of microbial elicitors of plant necrosis that induce a hypersensitive-like response in dicot plants. The spatial structure and role of these proteins are yet unknown. In a paper published in BMC Plant Biology (2008; 8:50) we have proposed that the core region of Nep1-like proteins (NLPs) belong to the Cupin superfamily. Based on what is known about the Cupin superfamily, in this addendum to the paper we discuss how NLPs could form oligomers.Key words: quaternary structure, necrosis and ethylene inducing proteins, NLPs, MpNEP1, MpNEP2, NPP1, Moniliophthora perniciosa, Phytophthora parasiticaCupins may be organized as monomers, dimers, hexamers and octamers of β-barrel domains.1 To the best of our knowledge trimers have not been detected yet. The interaction of two monomers building up a dimeric structure is basically performed by three types of interactions: hydrophobic interactions between β-strands in different subunits, salt bridges and hydrogen bonds between β-strands. In cupin dimers, the hydrophobic interactions occur between two βI strands in different subunits (Fig. 1A and B). This strand represents the central axis of rotation of the dimer as one residue in βI interacts with the corresponding residue in the other subunit (Fig. 1B). Therefore, all residues in βI must be hydrophobic, as one residue interacts with the other subunit and the next one in the sequence interacts with the interior of the protein. Charged residues in βI would disrupt such interactions. Most cupin dimers have strong hydrophobic residues such as tryptophan (W), phenylalanine (F) and methionine (M) pointing towards the own subunit (↓), while small hydrophobic residues such as leucine (L), isoleucine (I), and valine (V) point to the other subunit (↑). A particular case is leucine that interacts with other subunits, for instance, βI = liaW (positions 217–220 in Fig. 1B) and βI = LVsw of type I and II NLP consensuses, respectively. Therefore, the pattern of hydropathicity suggests that the side chain orientation is βI = l217 ↑ i218 ↓ a219 ↑ W220 ↓ d221 ↑. However we observe that just after βI there is a charged residue (aspartate D221) which would point outwards disrupting the dimer or at least making it less stable. It is interesting to observe that the requirement for a negatively charged residue at this last position is very high: 96% of all type I NLPs contains an aspartate (D) or glutamate (E) indicating an important role for it, maybe in avoiding dimerization of the NLPs. A second interesting hypothesis is as follows: several cupins are oxygenases, decarboxylases, etc. and use a negatively charged residue, such as aspartate or glutamate as proton donor.1 Now, if the alternate pattern of side chains of the residues is βI = l217 ↓ i218 ↑ a219 ↓ W220 ↑ d221 ↓, instead of the previous one, then the aspartate or glutamate residue would point to the hydrophobic pocket and would be positioned to interact with the metal ion, as in cupins with enzymatic activity. However, there are no experimental evidences that the NLPs have enzymatic activity.Open in a separate windowFigure 1(A) Three-dimensional structure prediction for type I NLP consensus, (B) Interface between two βI strands in type I NLP consensus. From the left to the right: EF-coil with the conserved residue H162, βC and βH strands (superposed) with the conserved histidines H133 and H135 in βC, H193 and leucine L195 in βH, W220 in βI and W118 in βB. The strands in the right subunit follow the same pattern but rotated.The second type of interaction is salt bridges between charged residues in different subunits. Analyzing all interacting side chains in the 1VJ2 protein (dimer), we verify that the charged side chains of N35 and E57 (numbers in original structure) are only 2.72 Å apart. In the NLPs, this corresponds to N10836% (Q10860%) at the border of βB and E13898%. The negatively charged residue D125 helps to correct the orientation of the subunits in relation to each other avoiding any disorientation. The high conservation level of these residues suggests that NLPs are dimeric structures. However, as we will see next, only hydrophobic and charged interactions are not enough to build a dimer.Garcia et al. (2007)2 have used small angle X-ray scattering (SAXS) to show that, in solution, at low concentrations (<2 mg/ml) the two copies of the NLPs of Moniliophthora perniciosa, MpNEP1 and MpNEP2, exist as dimers and monomers, respectively. The same technique showed that at higher concentrations, >5 mg/ml, both proteins exist as dimers, as is the case for PpNPP1.2 They also reported, based on electrophoresis analysis, that PpNPP1 and MpNEP1 exist as oligomers and MpNEP2 as monomers.2 However, experiments with the PpNPP1 in size exclusion chromatography using myoglobin as size standard suggest that PpNPP1 is a monomer.3 Figure 2 compares MpNEP1, MpNEP2 and PpNPP1, where the most relevant differences in sequence are marked with asterisks (*) and are possibly related to the differences in oligomeric properties between MpNEP1 and PpNPP1 with MpNEP2. These positions are methionine M27 and leucine L35, which occur only in MpNEP2, glycine G250, which occurs only in MpNEP2 and NEP1 (Fusarium oxysporum) and lysine K31, which occurs only MpNEP2, BAB04114 (Bacillus halodurans) and AAU23136 (Bacillus licheniformis). The other residues are aspartate D28, which occurs 9 times and alanine A37 which occurs 7 times of all investigated NLPs. Thus, the sequence mdHDkiakl at the start of the NLPs seems to explain the monomeric state of MpNEP2, although at higher concentrations they form dimers. Besides the weak hydrophobic interactions, dimeric cupins and bicupins (two β barrels in the same sequence building up a dimeric-like 4d-structure) are stable structures (see Fig. 1 in ref. 4). By aggregating the first β-strand in the start domain of one β-barrel to the ABIDG β-sheet of the other β-barrel, composing a big ABIDGY β-sheet (Y is the first β-strand). For instance, using the bicupin 1L3J (oxalate decarboxylase) as template, the low confidence level β-strand at position 26–33 (v in H29D30 avv) in type I NLPs corresponds to the first β-strand. Since this proceeds from both barrels they can build a stable structure (see Fig. 1 in ref. 4). The quaternary structure is related to the presence of interaction residues in the BID β-sheet of the cupin structure. These are present in the NLPs and would enable them to form dimers.Open in a separate windowFigure 2Alignment of type I NLP consensus, PpNPP1, MpNEP1 and MpNEP2. Solid line boxes are β-strands, double line boxes are α-helices. The sequence positions marked with asterisks (*) are possibly related to the differences in oligomeric properties between MpNEP1 and PpNPP1 with MpNEP2.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号