首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   377篇
  免费   28篇
  国内免费   3篇
  2023年   2篇
  2022年   2篇
  2021年   9篇
  2020年   2篇
  2018年   7篇
  2017年   3篇
  2016年   8篇
  2015年   17篇
  2014年   16篇
  2013年   24篇
  2012年   21篇
  2011年   19篇
  2010年   24篇
  2009年   18篇
  2008年   15篇
  2007年   20篇
  2006年   13篇
  2005年   18篇
  2004年   11篇
  2003年   10篇
  2002年   11篇
  2001年   14篇
  2000年   7篇
  1999年   9篇
  1998年   12篇
  1997年   6篇
  1996年   3篇
  1995年   5篇
  1994年   2篇
  1993年   3篇
  1992年   6篇
  1991年   5篇
  1990年   3篇
  1989年   5篇
  1988年   7篇
  1987年   5篇
  1986年   2篇
  1985年   4篇
  1984年   4篇
  1983年   2篇
  1982年   3篇
  1981年   3篇
  1980年   3篇
  1979年   2篇
  1977年   2篇
  1976年   2篇
  1973年   2篇
  1968年   2篇
  1932年   2篇
  1925年   2篇
排序方式: 共有408条查询结果,搜索用时 103 毫秒
131.
The complexity of fecal microbial communities and overlap among human and other animal sources have made it difficult to identify source-specific fecal indicator bacteria. However, the advent of next-generation sequencing technologies now provides increased sequencing power to resolve microbial community composition within and among environments. These data can be mined for information on source-specific phylotypes and/or assemblages of phylotypes (i.e., microbial signatures). We report the development of a new genetic marker for human fecal contamination identified through microbial pyrotag sequence analysis of the V6 region of the 16S rRNA gene. Sequence analysis of 37 sewage samples and comparison with database sequences revealed a human-associated phylotype within the Lachnospiraceae family, which was closely related to the genus Blautia. This phylotype, termed Lachno2, was on average the second most abundant fecal bacterial phylotype in sewage influent samples from Milwaukee, WI. We developed a quantitative PCR (qPCR) assay for Lachno2 and used it along with the qPCR-based assays for human Bacteroidales (based on the HF183 genetic marker), total Bacteroidales spp., and enterococci and the conventional Escherichia coli and enterococci plate count assays to examine the prevalence of fecal and human fecal pollution in Milwaukee's harbor. Both the conventional fecal indicators and the human-associated indicators revealed chronic fecal pollution in the harbor, with significant increases following heavy rain events and combined sewer overflows. The two human-associated genetic marker abundances were tightly correlated in the harbor, a strong indication they target the same source (i.e., human sewage). Human adenoviruses were routinely detected under all conditions in the harbor, and the probability of their occurrence increased by 154% for every 10-fold increase in the human indicator concentration. Both Lachno2 and human Bacteroidales increased specificity to detect sewage compared to general indicators, and the relationship to a human pathogen group suggests that the use of these alternative indicators will improve assessments for human health risks in urban waters.  相似文献   
132.
The melon is a lipid‐rich structure located in the forehead of odontocetes that functions to propagate echolocation sounds into the surrounding aquatic environment. To date, the melon's ability to guide and impedance match biosonar sounds to seawater has been attributed to its unique fatty acid composition. However, the melon is also acted upon by complex facial muscles derived from the m. maxillonasolabialis. The goal of this study was to investigate the gross morphology of the melon in bottlenose dolphins (Tursiops truncatus) and to describe how it is tendinously connected to these facial muscles. Standard gross dissection (N = 8 specimens) and serial sectioning (N = 3 specimens) techniques were used to describe the melon and to identify its connections to the surrounding muscles and blubber in three orthogonal body planes. The dolphin forehead was also thin‐sectioned in three body planes (N = 3 specimens), and polarized light was used to reveal the birefringent collagen fibers within and surrounding the melon. This study identified distinct regions of the melon that vary in shape and display locally specific muscle‐tendon morphologies. These regions include the bilaterally symmetric main body and cone and the asymmetric right and left caudal melon. This study is the first to identify that each caudal melon terminates in a lipid cup that envelopes the echolocation sound generators. Facial muscles of the melon have highly organized tendon populations that traverse the melon and insert into either the surrounding blubber, the connective tissue matrix of the nasal plug, or the connective tissue sheath surrounding the sound generators. The facial muscles and tendons also lie within multiple orthogonal body planes, which suggest that the melon is capable of complex shape change. The results of this study suggest that these muscles could function to change the frequency, beam width, and directionality of the emitted sound beam in bottlenose dolphins. The echolocation sound propagation pathway within the dolphin forehead appears to be a tunable system. J. Morphol., 2008. © 2008 Wiley‐Liss, Inc.  相似文献   
133.
Most DNA-based microbial source tracking (MST) approaches target host-associated organisms within the order Bacteroidales, but the gut microbiota of humans and other animals contain organisms from an array of other taxonomic groups that might provide indicators of fecal pollution sources. To discern between human and nonhuman fecal sources, we compared the V6 regions of the 16S rRNA genes detected in fecal samples from six animal hosts to those found in sewage (as a proxy for humans). We focused on 10 abundant genera and used oligotyping, which can detect subtle differences between rRNA gene sequences from ecologically distinct organisms. Our analysis showed clear patterns of differential oligotype distributions between sewage and animal samples. Over 100 oligotypes of human origin occurred preferentially in sewage samples, and 99 human oligotypes were sewage specific. Sequences represented by the sewage-specific oligotypes can be used individually for development of PCR-based assays or together with the oligotypes preferentially associated with sewage to implement a signature-based approach. Analysis of sewage from Spain and Brazil showed that the sewage-specific oligotypes identified in U.S. sewage have the potential to be used as global alternative indicators of human fecal pollution. Environmental samples with evidence of prior human fecal contamination had consistent ratios of sewage signature oligotypes that corresponded to the trends observed for sewage. Our methodology represents a promising approach to identifying new bacterial taxa for MST applications and further highlights the potential of the family Lachnospiraceae to provide human-specific markers. In addition to source tracking applications, the patterns of the fine-scale population structure within fecal taxa suggest a fundamental relationship between bacteria and their hosts.  相似文献   
134.
Electronic tags have proven to be valuable tools in assessing small cetacean movement and behavior. However, problems associated with tag size and attachment have limited duration and damaged dorsal fins. These outcomes have motivated researchers to develop a new satellite‐linked tag design that reduces detrimental effects to tagged animals, while increasing transmission durations. The goals of this study were to review previous studies that deployed single‐pin transmitters and determine factors that influence transmission duration. Then, test these factors utilizing computational fluid dynamics (CFD) models to identify an optimal single‐pin satellite‐linked tag design, and evaluate this prototype through field studies. A review of four projects, which deployed 77 single‐pin radio tags, determined that tags attached along the lower third of the dorsal fin and approximately 33 mm from the trailing edge resulted in longer transmission durations and reduced negative impacts to the dorsal fin. Based upon these results and CFD modeling, prototype, single‐pin satellite‐linked tags (n = 25) transmitted for 163 ± 22 d (mean ± 95% CI) which greatly exceeded transmissions for previous small cetacean telemetry studies. These results suggest that the newly developed single‐pin satellite‐linked tag design strikes a balance between reducing impacts to the individual while maximizing transmissions.  相似文献   
135.

Background

The relationship between poor sanitation and the parasitic infection schistosomiasis is well-known, but still rarely investigated directly and quantitatively. In a Brazilian village we correlated the spatial concentration of human fecal contamination of its main river and the prevalence of schistosomiasis.

Methods

We validated three bacterial markers of contamination in this population by high throughput sequencing of the 16S rRNA gene and qPCR of feces from local residents. The qPCR of genetic markers from the 16S rRNA gene of Bacteroides-Prevotella group, Bacteroides HF8 cluster, and Lachnospiraceae Lachno2 cluster as well as sequencing was performed on georeferenced samples of river water. Ninety-six percent of residents were examined for schistosomiasis.

Findings

Sequence of 16S rRNA DNA from stool samples validated the relative human specificity of the HF8 and Lachno 2 fecal indicators compared to animals. The concentration of fecal contamination increased markedly along the river as it passed an increasing proportion of the population on its way downstream as did the sequence reads from bacterial families associated with human feces. Lachnospiraceae provided the most robust signal of human fecal contamination. The prevalence of schistosomiasis likewise increased downstream. Using a linear regression model, a significant correlation was demonstrated between the prevalence of S. mansoni infection and local concentration of human fecal contamination based on the Lachnospiraceae Lachno2 cluster (r2 0.53) as compared to the correlation with the general fecal marker E. coli (r2 0.28).

Interpretation

Fecal contamination in rivers has a downstream cumulative effect. The transmission of schistosomiasis correlates with very local factors probably resulting from the distribution of human fecal contamination, the limited movement of snails, and the frequency of water contact near the home. In endemic regions, the combined use of human associated bacterial markers and GIS analysis can quantitatively identify areas with risk for schistosomiasis as well as assess the efficacy of sanitation and environmental interventions for prevention.  相似文献   
136.
137.
In fungi, the anchoring of proteins to the plasma membrane via their covalent attachment to glycosylphosphatidylinositol (GPI) is essential and thus provides a valuable point of attack for the development of antifungal therapeutics. Unfortunately, studying the underlying biology of GPI-anchor synthesis is difficult, especially in medically relevant fungal pathogens because they are not genetically tractable. Compounding difficulties, many of the genes in this pathway are essential in Saccharomyces cerevisiae. Here, we report the discovery of a new small molecule christened gepinacin (for GPI acylation inhibitor) which selectively inhibits Gwt1, a critical acyltransferase required for the biosynthesis of fungal GPI anchors. After delineating the target specificity of gepinacin using genetic and biochemical techniques, we used it to probe key, therapeutically relevant consequences of disrupting GPI anchor metabolism in fungi. We found that, unlike all three major classes of antifungals in current use, the direct antimicrobial activity of this compound results predominantly from its ability to induce overwhelming stress to the endoplasmic reticulum. Gepinacin did not affect the viability of mammalian cells nor did it inhibit their orthologous acyltransferase. This enabled its use in co-culture experiments to examine Gwt1's effects on host-pathogen interactions. In isolates of Candida albicans, the most common fungal pathogen in humans, exposure to gepinacin at sublethal concentrations impaired filamentation and unmasked cell wall β-glucan to stimulate a pro-inflammatory cytokine response in macrophages. Gwt1 is a promising antifungal drug target, and gepanacin is a useful probe for studying how disrupting GPI-anchor synthesis impairs viability and alters host-pathogen interactions in genetically intractable fungi.  相似文献   
138.
Prolactin (PRL) has been suggested as an indicator of fatigue during exertional heat stress (EHS), given its strong relationship with body core temperature (T(c)); however, the strength of this relationship during different rates of T(c) increase and subsequent recovery is unknown. In addition, given the influence that systemic cytokines, such as interleukin (IL)-6 and tumor necrosis factor (TNF)-α, have on the pituitary gland, it would be of interest to determine the relationship between PRL, IL-6, and TNF-α during EHS. The purpose was to examine the PRL, IL-6, and TNF-α heat stress responses during slow and fast heating and subsequent resting or cold water immersion recovery. On 4 days, nine individuals walked at ~45% (slow heating) or ran at ~65% (fast heating) maximal oxygen consumption on a treadmill in the heat (40°C, 30% relative humidity) until rectal temperature (T(re)) reached 39.5°C (esophageal temperature; fast = 39.41 ± 0.04°C, slow = 39.82 ± 0.09°C). Post-EHS, subjects were either immersed in 2°C water or rested seated until T(re) returned to 38.0°C. Venous blood, analyzed for PRL, IL-6, and TNF-α, was obtained at rest, during exercise (T(re) 38.0, 39.0, 39.5°C), the start of recovery (~5 min after 39.5°C), and subsequent recovery (T(re) 39.0, 38.0°C). IL-6 exhibited myokine properties, given the greater increases with slow heating and lack of increase in TNF-α. A strong temperature-dependent PRL response during slow and fast heating provides additional support for the use of PRL as a peripheral marker of impending fatigue, which is independent of IL-6 and TNF-α cytokine responses.  相似文献   
139.
Exosomes are lipid-bound nanovesicles formed by inward budding of the endosomal membrane and released following fusion of the endosomal limiting membrane with the plasma membrane. We show here that primary leukocytes do not release exosomes unless subjected to potent activation signals, such as cytokine or mitogen stimulation. In particular, high levels of exosomes were released when murine splenic B cells were stimulated via CD40 and the IL-4 receptor. This property was shared by B cells from different anatomic locations, as newly formed marginal zone and follicular B cells were capable of secreting exosomes upon CD40/IL-4 triggering. B cell exosomes expressed high levels of MHC class I, MHC class II, and CD45RA (B220), as well as components of the BCR complex, namely, surface Ig, CD19, and the tetraspanins CD9 and CD81. Ig on the plasma membrane of primary B cells was targeted to the exosome pathway, demonstrating a link between the BCR and this exocytic pathway. IgD and IgM were the predominant Ig isotypes associated with CD40/IL-4 elicited exosomes, though other isotypes (IgA, IgG1, IgG2a/2b, and IgG3) were also detected. Together, these results suggest that exosome release is not constitutive activity of B cells, but may be induced following cell: cell signaling.  相似文献   
140.
The vulnerability of the human brain to injury following just a few minutes of oxygen deprivation with submergence contrasts markedly with diving mammals, such as Weddell seals (Leptonychotes weddellii), which can remain underwater for more than 90 min while exhibiting no neurological or behavioural impairment. This response occurs despite exposure to blood oxygen levels concomitant with human unconsciousness. To determine whether such aquatic lifestyles result in unique adaptations for avoiding ischaemic-hypoxic neural damage, we measured the presence of circulating (haemoglobin) and resident (neuroglobin and cytoglobin) oxygen-carrying globins in the cerebral cortex of 16 mammalian species considered terrestrial, swimming or diving specialists. Here we report a striking difference in globin levels depending on activity lifestyle. A nearly 9.5-fold range in haemoglobin concentration (0.17-1.62 g Hb 100 g brain wet wt(-1)) occurred between terrestrial and deep-diving mammals; a threefold range in resident globins was evident between terrestrial and swimming specialists. Together, these two globin groups provide complementary mechanisms for facilitating oxygen transfer into neural tissues and the potential for protection against reactive oxygen and nitrogen groups. This enables marine mammals to maintain sensory and locomotor neural functions during prolonged submergence, and suggests new avenues for averting oxygen-mediated neural injury in the mammalian brain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号