首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   692篇
  免费   67篇
  国内免费   1篇
  2022年   7篇
  2021年   16篇
  2020年   5篇
  2019年   11篇
  2018年   11篇
  2017年   5篇
  2016年   20篇
  2015年   24篇
  2014年   26篇
  2013年   30篇
  2012年   41篇
  2011年   34篇
  2010年   27篇
  2009年   14篇
  2008年   38篇
  2007年   30篇
  2006年   36篇
  2005年   33篇
  2004年   23篇
  2003年   27篇
  2002年   26篇
  2001年   21篇
  2000年   26篇
  1999年   17篇
  1998年   15篇
  1997年   5篇
  1996年   4篇
  1995年   10篇
  1994年   3篇
  1993年   10篇
  1992年   8篇
  1991年   9篇
  1990年   18篇
  1989年   19篇
  1988年   11篇
  1987年   13篇
  1986年   3篇
  1985年   4篇
  1983年   5篇
  1981年   5篇
  1980年   7篇
  1979年   4篇
  1978年   4篇
  1976年   3篇
  1973年   7篇
  1972年   3篇
  1971年   3篇
  1970年   5篇
  1965年   3篇
  1958年   3篇
排序方式: 共有760条查询结果,搜索用时 62 毫秒
61.
Flt3 ligand (FL) and granulocyte-macrophage colony-stimulating factor (GM-CSF) are important growth factors for dendritic cells (DC). Substantial numbers of DC can be generated in vivo following the administration of either factor. We sought to extend our knowledge of the functional properties of these cells including their ability to prime na?ve CD8(+) T cells. In addition, we compared the nature of the DC generated in vivo with the single cytokines to those generated with the combination of FL+polyethylene glycol-modified GM-CSF (pGM-CSF). Treatment with FL+pGM-CSF yielded greater numbers of both CD11b(low) and CD11b(high) DC than with either cytokine alone, and these DC were more efficient at antigen (Ag) capture. The FL+pGM-CSF-generated CD11b(low) DC lacked expression of CD8alpha. Following treatment with LPS in vivo, all DC subsets upregulated CD40, CD80, CD86, and MHC class II expression, but surprisingly Ag capture was not downregulated and some DC subsets retained expression of intracellular MHC class II vesicles. Thus, even after activation in vivo with LPS, DC retained Ag capture properties of immature DC, and Ag presentation/costimulation properties of mature DC. Though all DC subsets stimulated CD4(+) T cell proliferation equivalently, FL-generated DC were more efficient at priming Ag-specific CD8(+) cytolytic T cells than DC generated with either pGM-CSF alone or FL+pGM-CSF, and CD11b(high) DC were more efficient at priming CD8(+) T cells than CD11b(low) DC.  相似文献   
62.
The present study investigated whether there were any differences between males and females in respect to creatine transporter (CreaT) gene expression and/or total creatine (TCr) content in human vastus lateralis muscle. Skeletal muscle obtained from young healthy male (n = 13, age: 23.2 ± 5.0 years) and female subjects (n = 12, age: 21.7 ± 4.3 years) was analyzed for CreaT mRNA, CreaT protein and TCr content. Total CreaT protein content in the muscle was similar (p > 0.05) between the sexes. Two bands (~ 55 and 73 kDa) of the CreaT protein were detected in all muscle samples. Both the 55 and the 73 kDa bands were present in similar (p > 0.05) amounts in males compared with females. The 73 kDa band was in greater abundance (p < 0.05) than the 55 kDa band, irrespective of gender. In addition, CreaT mRNA expression relative to -actin mRNA and the TCr content (males: 117.8 ± 2.2, females: 125.3 ± 4.3 mmol.kg–1 dry mass) were also unaffected (p > 0.05) by gender. These data demonstrate that gender does not influence skeletal muscle TCr content and CreaT gene expression in young human subjects.  相似文献   
63.
Most of the malic enzyme activity in the brain is found in the mitochondria. This isozyme may have a key role in the pyruvate recycling pathway which utilizes dicarboxylic acids and substrates such as glutamine to provide pyruvate to maintain TCA cycle activity when glucose and lactate are low. In the present study we determined the activity and kinetics of malic enzyme in two subfractions of mitochondria isolated from cortical synaptic terminals, as well as the activity and kinetics in mitochondria isolated from primary cultures of cortical neurons and cerebellar granule cells. The synaptic mitochondrial fractions had very high mitochondrial malic enzyme (mME) activity with a Km and a Vmax of 0.37 mM and 32.6 nmol/min/mg protein and 0.29 mM and 22.4 nmol/min mg protein, for the SM2 and SM1 fractions, respectively. The Km and Vmax for malic enzyme activity in mitochondria isolated from cortical neurons was 0.10 mM and 1.4 nmol/min/mg protein and from cerebellar granule cells was 0.16 mM and 5.2 nmol/min/mg protein. These data show that mME activity is highly enriched in cortical synaptic mitochondria compared to mitochondria from cultured cortical neurons. The activity of mME in cerebellar granule cells is of the same magnitude as astrocyte mitochondria. The extremely high activity of mME in synaptic mitochondria is consistent with a role for mME in the pyruvate recycling pathway, and a function in maintaining the intramitochondrial reduced glutathione in synaptic terminals.  相似文献   
64.
A classical genetic strategy has been combined with an in vitro selection method to search for functional interactions between the two domains of the hairpin ribozyme. G(21) is located within internal loop B; it is proposed to form a sheared base pair with A(43) across loop B and to bind a Mg(2+) ion. Both nucleotides are important for ribozyme function, and G.A sheared base pairs are a very widespread motif in structured RNA. We took advantage of its presence in the hairpin ribozyme to study its functional role. Pseudorevertants, in which the loss of G(21) was compensated by mutations at other positions, were isolated by in vitro selection. The vast majority of G(21) revertants contained substitutions within domain A, pointing to functional communication between specific sites within the two domains of the hairpin ribozyme. The possibility of a direct or redundant contacts is supported by electrophoretic mobility shift studies showing that a complex formed between domain B of the ribozyme and the substrate was disrupted and restored by base substitutions that have analogous effects on catalytic activity. The functional significance of this complex, the role of the nucleotides involved, and the basis for magnesium ion requirement is discussed.  相似文献   
65.
66.
67.
The expression of activated RAS oncogenes has been shown to increase radioresistance in a number of cell lines. The pathways by which RAS leads to radioresistance, however, are unknown. RAS activates several signal transduction pathways, with the RAF-MAP2K-MAP kinase pathway perhaps the best studied. MAP kinase has also been shown to be activated by radiation through this pathway. Given the important role of MAP kinase in multiple signaling events, we asked if radioresistance induced by RAS was mediated through the activation of MAPK. Cells of two human bladder carcinoma cell lines were used, one with a mutated oncogenic HRAS (T24) and other with a wild-type HRAS (RT4). The surviving fraction after exposure to 2 Gy of radiation (SF2) for the T24 cell lines was found to be 0.62, whereas that for RT4 cells was 0.40. Treatment with the farnesyl transferase inhibitor (FTI) L744,832, which inhibits RAS processing and activity, decreased the SF2 of T24 cells to 0.29, whereas the SF2 of RT4 cells remained unchanged after FTI treatment, thus demonstrating the importance of RAS activation to the radiosensitivity of cells with mutated RAS. MAP kinase activation was found to be constitutive and dependent on RAS in T24 cells, while it was inducible by radiation and was independent of RAS in RT4 cells. Treatment of both cell lines with the MAP2K inhibitor PD98059 inhibited MAPK activation; however, inhibiting MAPK activation had no effect on radiation survival of T24 or RT4 cells. These data indicate that MAPK activation does not contribute to RAS-induced radioresistance in this system.  相似文献   
68.
Previous studies have shown that a peptide identical in sequence to the N-terminal of link protein can function as a growth factor and up-regulate proteoglycan synthesis by human articular cartilage in explant culture (L. A. McKenna et al., Arthritis Rheum. 41, 157-162, 1998). The present study has extended these investigations to determine the effects of this peptide on the synthesis of collagen, another essential component of normal cartilage matrix. Explants from normal adult knee cartilage were maintained for periods of up to 8 days in medium with or without serum. Peptides were added during each day of culture. Synthesis of collagen was determined by the incorporation of [3H]proline into hydroxyproline and proteoglycans by incorporation of [35S]sulfate. The type of newly synthesized collagen was measured by SDS-polyacrylamide gel electrophoresis, fluorography, and immunoblotting. The link protein peptide stimulated synthesis of type II collagen in cartilage from a number of different subjects. Maximum up-regulation of synthesis was attained at a concentration of 100 ng/ml, similar to that observed previously for up-regulation of proteoglycan. Synthesis was up-regulated in both the presence and the absence of serum, although the overall rate of synthesis was greater when serum was added. The findings that this link peptide growth factor stimulated synthesis of proteins, including collagen, in a manner analogous to that shown previously for proteoglycans support the hypothesis that this peptide may have an important role in the feedback control of cartilage matrix synthesis.  相似文献   
69.
The ecto-5-nucleotidase from the cattle tick Boophilus microplus is an unusual enzyme, hydrolysing a variety of nucleoside mono-, di- and triphosphates to release the free nucleoside. The gene has been sequenced and the recombinant protein expressed as a functional, active enzyme. Nevertheless, the function of the enzyme in the tick remains obscure. The enzyme is present throughout the life cycle, but in largest amounts in unfed larvae and adult ticks. The tissue location has been studied in adult female ticks by Western blotting, RT-PCR and immunofluorescence. All methods show the enzyme to be principally in the Malpighian tubules, though significant amounts are also present on the surface of ovaries and in detectible amounts in other tissues. This, together with the known specificity of the enzyme, suggests a role in purine salvage pathways. Sensitivity of ticks to allopurinol, an inhibitor of hypoxanthine-guanine-phosphoribosyltransferase, supports the importance of purine salvage in this tick and the potential role of nucleotidase in this pathway.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号