首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   693篇
  免费   69篇
  国内免费   1篇
  2022年   8篇
  2021年   14篇
  2020年   4篇
  2019年   12篇
  2018年   11篇
  2016年   16篇
  2015年   23篇
  2014年   28篇
  2013年   34篇
  2012年   41篇
  2011年   32篇
  2010年   27篇
  2009年   20篇
  2008年   36篇
  2007年   32篇
  2006年   35篇
  2005年   31篇
  2004年   21篇
  2003年   26篇
  2002年   27篇
  2001年   20篇
  2000年   27篇
  1999年   16篇
  1998年   15篇
  1997年   6篇
  1996年   6篇
  1995年   9篇
  1994年   4篇
  1993年   10篇
  1992年   9篇
  1991年   10篇
  1990年   16篇
  1989年   19篇
  1988年   12篇
  1987年   13篇
  1986年   4篇
  1985年   4篇
  1983年   5篇
  1982年   3篇
  1981年   5篇
  1980年   8篇
  1979年   4篇
  1978年   4篇
  1976年   3篇
  1973年   7篇
  1972年   3篇
  1971年   3篇
  1970年   5篇
  1965年   3篇
  1958年   3篇
排序方式: 共有763条查询结果,搜索用时 15 毫秒
651.
Male reproductive gland proteins (mRGPs) impact the physiology and/or behavior of mated females in a broad range of organisms. We sought to identify mRGPs of the yellow fever mosquito, Aedes aegypti, the primary vector of dengue and yellow fever viruses. Earlier studies with Ae. aegypti demonstrated that "matrone" (a partially purified male reproductive accessory gland substance) or male accessory gland fluid injected into virgin female Ae. aegypti affect female sexual refractoriness, blood feeding and digestion, flight, ovarian development, and oviposition. Using bioinformatic comparisons to Drosophila melanogaster accessory gland proteins and mass spectrometry of proteins from Ae. aegypti male accessory glands and ejaculatory ducts (AG/ED) and female reproductive tracts, we identified 63 new putative Ae. aegypti mRGPs. Twenty-one of these proteins were found in the reproductive tract of mated females but not of virgin females suggesting that they are transferred from males to females during mating. Most of the putative mRGPs fall into the same protein classes as mRGPs in other organisms, although some appear to be evolving rapidly and lack identifiable homologs in Culex pipiens, Anopheles gambiae, and D. melanogaster. Our results identify candidate male-derived molecules that may have an important influence on behavior, survival, and reproduction of female mosquitoes.  相似文献   
652.
653.
Little is known about fatigue and training effects on sarcoplasmic reticulum (SR) function in human muscle, and we therefore investigated this in eight untrained controls (UT), eight endurance-trained (ET), and eight resistance-trained athletes (RT). Muscle biopsies (vastus lateralis) taken at rest and after 50 maximal quadriceps contractions (180 degrees/s, 0.5 Hz) were analyzed for fiber composition, metabolites and maximal SR Ca(2+) release, Ca(2+) uptake, and Ca(2+)-ATPase activity. Fatigue reduced (P < 0.05) Ca(2+) release (42.1 +/- 3.8%, 43.4 +/- 3.9%, 31.3 +/- 6.1%), Ca(2+) uptake (43.0 +/- 5.2%, 34.1 +/- 4.6%, 28.4 +/- 2.8%), and Ca(2+)-ATPase activity (38.6 +/- 4.2%, 48.5 +/- 5.7%, 29.6 +/- 5.0%), in UT, RT, and ET, respectively. These decreases were correlated with fatigability and with type II fiber proportion (P < 0.05). Resting SR measures were correlated with type II proportion (r > or = 0.51, P < 0.05). ET had lower resting Ca(2+) release, Ca(2+) uptake, and Ca(2+)-ATPase (P < 0.05) than UT and RT (P < 0.05), probably because of their lower type II proportion; only minor effects were found in RT. Thus SR function is markedly depressed with fatigue in controls and in athletes, is dependent on fiber type, and appears to be minimally affected by chronic training status.  相似文献   
654.
655.
Human carbonic anhydrase II (HCA II) has a histidine at position 64 (His64) that donates a proton to the zinc-bound hydroxide in catalysis of the dehydration of bicarbonate. To examine the effect of the histidine location on proton shuttling, His64 was replaced with Ala and Thr200 replaced with histidine (H64A-T200H HCAII), effectively relocating the proton shuttle residue 2 A closer to the zinc-bound hydroxide compared to wild type HCA II. The crystal structure of H64A-T200H HCA II at 1.8 A resolution shows the side chain of His200 directly hydrogen-bonded with the zinc-bound solvent. Different proton transfer processes were observed at pH 6 and at pH 8 during the catalytic hydration-dehydration cycle, measured by mass spectrometry as the depletion of 18O from C18O2 by H64A-T200H HCA II. The process at pH 6.0 is attributed to proton transfer between the side chain of His200 and the zinc-bound hydroxide, in analogy with proton transfer involving His64 in wild-type HCA II. At pH 8.0 it is attributed to proton transfer between bicarbonate and the zinc-bound hydroxide, as supported by the dependence of the rate of proton transfer on bicarbonate concentration and on solvent hydrogen isotope effects. This study establishes that a histidine directly hydrogen-bonded to the zinc-bound hydroxide, can adopt the correct distance geometry to support proton transfer  相似文献   
656.
We investigated whether depressed muscle Na(+)-K(+)-ATPase activity with exercise reflected a loss of Na(+)-K(+)-ATPase units, the time course of its recovery postexercise, and whether this depressed activity was related to increased Na(+)-K(+)-ATPase isoform gene expression. Fifteen subjects performed fatiguing, knee extensor exercise at approximately 40% maximal work output per contraction. A vastus lateralis muscle biopsy was taken at rest, fatigue, 3 h, and 24 h postexercise and analyzed for maximal Na(+)-K(+)-ATPase activity via 3-O-methylfluorescein phosphatase (3-O-MFPase) activity, Na(+)-K(+)-ATPase content via [(3)H]ouabain binding sites, and Na(+)-K(+)-ATPase alpha(1)-, alpha(2)-, alpha(3)-, beta(1)-, beta(2)- and beta(3)-isoform mRNA expression by real-time RT-PCR. Exercise [352 (SD 267) s] did not affect [(3)H]ouabain binding sites but decreased 3-O-MFPase activity by 10.7 (SD 8)% (P < 0.05), which had recovered by 3 h postexercise, without further change at 24 h. Exercise elevated alpha(1)-isoform mRNA by 1.5-fold at fatigue (P < 0.05). This increase was inversely correlated with the percent change in 3-O-MFPase activity from rest to fatigue (%Delta3-O-MFPase(rest-fatigue)) (r = -0.60, P < 0.05). The average postexercise (fatigue, 3 h, 24 h) alpha(1)-isoform mRNA was increased 1.4-fold (P < 0.05) and approached a significant inverse correlation with %Delta3-O-MFPase(rest-fatigue) (r = -0.56, P = 0.08). Exercise elevated alpha(2)-isoform mRNA at fatigue 2.5-fold (P < 0.05), which was inversely correlated with %Delta3-O-MFPase(rest-fatigue) (r = -0.60, P = 0.05). The average postexercise alpha(2)-isoform mRNA was increased 2.2-fold (P < 0.05) and was inversely correlated with the %Delta3-O-MFPase(rest-fatigue) (r = -0.68, P < 0.05). Nonsignificant correlations were found between %Delta3-O-MFPase(rest-fatigue) and other isoforms. Thus acute exercise transiently decreased Na(+)-K(+)-ATPase activity, which was correlated with increased Na(+)-K(+)-ATPase gene expression. This suggests a possible signal-transduction role for depressed muscle Na(+)-K(+)-ATPase activity with exercise.  相似文献   
657.
Disease-causing mutations in cardiac myosin heavy chain (beta-MHC) are identified in about one-third of families with hypertrophic cardiomyopathy (HCM). The effect of myosin mutations on calcium sensitivity of the myofilaments, however, is largely unknown. Because normal and mutant cardiac MHC are also expressed in slow-twitch skeletal muscle, which is more easily accessible and less subject to the adaptive responses seen in myocardium, we compared the calcium sensitivity (pCa(50)) and the steepness of force-pCa relations (cooperativity) of single soleus muscle fibers from healthy individuals and from HCM patients of three families with selected myosin mutations. Fibers with the Arg723Gly and Arg719Trp mutations showed a decrease in mean pCa(50), whereas those with the Ile736Thr mutation showed slightly increased mean pCa(50) with higher active forces at low calcium concentrations and residual active force even under relaxing conditions. In addition, there was a marked variability in pCa(50) between individual fibers carrying the same mutation ranging from an almost normal response to highly significant differences that were not observed in controls. While changes in mean pCa(50) may suggest specific pharmacological treatment (e.g., calcium antagonists), the observed large functional variability among individual muscle cells might negate such selective treatment. More importantly, the variability in pCa(50) from fiber to fiber is likely to cause imbalances in force generation and be the primary cause for contractile dysfunction and development of disarray in the myocardium.  相似文献   
658.
A well-characterised gain-of-function point mutation within exon 17 of the c-kit proto-oncogene known as Asp816Val is present in patients with mastocytosis. Activation of mast cells through this receptor primes them for IgE-dependent activation, and patients with mastocytosis are at increased risk of anaphylaxis. We hypothesised that the Asp816Val mutation is associated with a history of anaphylaxis in the general population. A mismatch amplification real-time PCR assay was developed and validated to test for the Asp816Val mutation. Subjects were recruited to four subject groups: normal non-atopics, atopics without anaphylaxis, food-induced anaphylactics and non-food anaphylactics. Blood samples collected from forty subjects were tested for the presence of Asp816Val. Thirteen subjects were found to carry the mutation; normals (2/9), atopics (2/10), food anaphylactics (5/11) and non-food anaphylactics (4/10). Statistical analysis of the data determined that there was no significant difference between the numbers of subjects found to carry the Asp816Val mutation in each of the groups although a trend towards an increased occurrence in anaphylactics was observed. In summary, the hypothesis that the presence of the Asp816Val mutation is linked to the occurrence of anaphylaxis was not supported, but interestingly, we have shown for the first time Asp816Val may occur more frequently than previously reported within the general population.  相似文献   
659.
Promotion of osteoclast apoptosis is one therapeutic approach to osteoporosis. Calmodulin, the major intracellular Ca(2+) receptor, modulates both osteoclastogenesis and bone resorption. The calmodulin antagonist, trifluoperazine, rescues bone loss in ovariectomized mice (Zhang, L., Feng, X., and McDonald, J. M. (2003) Endocrinology 144, 4536-4543). We show here that a 3-h treatment of mouse osteoclasts with either of the calmodulin antagonists, tamoxifen or trifluoperazine, induces osteoclast apoptosis dose-dependently. Tamoxifen, 10 microm, and trifluoperazine, 10 microm, induce 7.3 +/- 1.8-fold and 5.3 +/- 0.9-fold increases in osteoclast apoptosis, respectively. In Jurkat cells, calmodulin binds to Fas, the death receptor, and this binding is regulated during Fas-mediated apoptosis (Ahn, E. Y., Lim, S. T., Cook, W. J., and McDonald, J. M. (2004) J. Biol. Chem. 279, 5661-5666). In osteoclasts, calmodulin also binds Fas. When osteoclasts are treated with 10 microm trifluoperazine, the binding between Fas and calmodulin is dramatically decreased at 15 min and gradually recovers by 60 min. A point mutation of the Fas death domain in the Lpr(-cg) mouse renders Fas inactive. Using glutathione S-transferase fusion proteins, the human Fas cytoplasmic domain is shown to bind calmodulin, whereas a point mutation (V254N) comparable with the Lpr(-cg) mutation in mice has markedly reduced calmodulin binding. Osteoclasts derived from Lpr(-cg) mice have diminished calmodulin/Fas binding and are more sensitive to calmodulin antagonist-induced apoptosis than those from wild-type mice. Both tamoxifen- and trifluoperazine-induced apoptosis are increased 1.6 +/- 0.2-fold in Lpr(-cg)-derived osteoclasts compared with osteoclasts derived from wild-type mice. In summary, calmodulin antagonists induce apoptosis in osteoclasts by a mechanism involving interference with calmodulin binding to Fas. The effects of calmodulin/Fas binding on calmodulin antagonist-induced apoptosis may open a new avenue for therapy for osteoporosis.  相似文献   
660.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号