首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   693篇
  免费   69篇
  国内免费   1篇
  2022年   8篇
  2021年   14篇
  2020年   4篇
  2019年   12篇
  2018年   11篇
  2016年   16篇
  2015年   23篇
  2014年   28篇
  2013年   34篇
  2012年   41篇
  2011年   32篇
  2010年   27篇
  2009年   20篇
  2008年   36篇
  2007年   32篇
  2006年   35篇
  2005年   31篇
  2004年   21篇
  2003年   26篇
  2002年   27篇
  2001年   20篇
  2000年   27篇
  1999年   16篇
  1998年   15篇
  1997年   6篇
  1996年   6篇
  1995年   9篇
  1994年   4篇
  1993年   10篇
  1992年   9篇
  1991年   10篇
  1990年   16篇
  1989年   19篇
  1988年   12篇
  1987年   13篇
  1986年   4篇
  1985年   4篇
  1983年   5篇
  1982年   3篇
  1981年   5篇
  1980年   8篇
  1979年   4篇
  1978年   4篇
  1976年   3篇
  1973年   7篇
  1972年   3篇
  1971年   3篇
  1970年   5篇
  1965年   3篇
  1958年   3篇
排序方式: 共有763条查询结果,搜索用时 15 毫秒
641.
Since the malate-aspartate shuttle in brain has been shown to be closely linked to brain energy metabolism and neurotransmitter synthesis, the activity of MDH, one of the enzymes of the malateaspartate shuttle, was studied in cortical non-synaptic mitochondria (mMDH) and cytosol (cMDH) in 1–4 day, 18–20 day and 7–8 week old rats. The mean mMDH activity (nmol/min/mg protein) was 10,517±734 (mean±SEM), 8,882±241 and 10,323±561 and cMDH activity was 2,453±99, 4,673±152 and 6,821±205 in 1–4 day, 18–20 day and 7–8 week old rats, respectively. While cMDH activity increased with age (p<0.0001), mMDH activity showed no change. This study also determined if endogenous compounds, previously shown to alter malate metabolism, affected MDH activities. Lactate inhibited only cMDH activity, by a competitive mechanism. Oxaloacetate inhibited mMDH by partial non-competitive inhibition and cMDH by competitive inhibition. Alpha-ketoglutarate competitively inhibited both enzymes; however, the inhibition of mMDH activity was more pronounced than that of cMDH activity. Citrate inhibited mMDH via an uncompetitive mechanism and cMDH via a noncompetitive mechanism. The mechanisms of inhibition of mMDH and cMDH by each of the effectors were the same over the three ages. The results suggest mMDH and cMDH activities show a dissimilar developmental pattern and may be regulated differently by endogenous effectors. The greater sensitivity of mMDH, compared to cMDH, to certain effectors may be related to the dual role of mMDH in the tricarboxylic acid cycle and the malate-aspartate shuttle.These data were presented in part at the meeting of the Federation of American Societies for Experimental Biology in Atlanta, Georgia, April 1991. This work was performed in partial fulfillment of the requirements for the M.S. Degree in Nutritional Sciences (P.M.)  相似文献   
642.
The class 1 outer membrane protein (OMP), a major variable surface antigen of Neisseria meningitidis, is a component of novel meningococcal vaccines currently in field trials. Serological variants of the protein are also used to serosubtype meningococci. Most of the amino acid changes that give rise to antigenic variants of the protein occur in two variable regions (VR1 and VR2) that are thought to form loops on the cell surface. The polymerase chain reaction (PCR) was used to amplify the nucleotide sequences encoding VR1 and VR2 from the chromosomal DNA of N. meningitidis strain M1080. These were cloned in frame into the lamB gene of the Escherichia coli expression vector pAJC264. Whole-cell enzyme-linked immunosorbent assays (ELISAs), using monoclonal antibodies, and SDS PAGE confirmed that, upon induction, strains of E. coli carrying these constructs expressed hybrid LamB proteins containing the N. meningitidis surface loops. These strains were used to immunize rabbits and the resultant polyclonal antisera reacted specifically with the class 1 OMP of reference strain M1080 (P1.7). Immunogold labelling of meningococcal cells and whole-cell dot-blot analyses with these antisera showed that the variable epitopes were exposed on the cell surface and confirmed that this approach could be used to obtain serosubtype-specific antisera. The binding profiles of the antisera were determined from their reactions with overlapping synthetic peptides and their reactivity compared with that of relevant serosubtype-specific monoclonal antibodies. This approach was used successfully to raise antisera against two other class 1 OMP VR2s. A fourth antiserum raised against a VR2, including the P1.1 epitope, was not subtype specific.  相似文献   
643.
Since malate is known to play an important role in a variety of functions in the brain including energy metabolism, the transfer of reducing equivalents and possibly metabolic trafficking between different cell types; a series of biochemical determinations were initiated to evaluate the rate of14CO2 production froml-[U-14C]malate in primary cultures of rat brain astrocytes. The14CO2 production from labeled malate was almost totally suppressed by the metabolic inhibitors rotenone and antimycin A suggesting that most of malate metabolism was coupled to the electron transport system. A double reciprocal plot of the14CO2 production from the metabolism of labeled malate revealed biphasic kinetics with two apparent Km and Vmax values suggesting the presence of more than one mechanism of malate metabolism in these cells. Subsequent experiments were carried out using 0.01 mM and 0.5 mM malate to determine whether the addition of effectors would differentially alter the metabolism of high and low concentrations of malate. Effectors studied included compounds which could be endogenous regulators of malate metabolism and metabolic inhibitors which would provide information regarding the mechanisms regulating malate metabolism. Both lactate and aspartate decreased14CO2 production from 0.01 mM and 0.5 mM malate equally. However, a number of effectors were identified which selectively altered the metabolism of 0.01 mM malate including aminooxyacetate, furosemide, N-acetylaspartate, oxaloacetate, pyruvate and glucose, but had little or no effect on the metabolism of 0.5 mM malate. In addition, -ketoglutarate and succinate decreased14CO2 production from 0.01 mM malate much more than from 0.5 mM malate. In contrast, a number of effectors altered the metabolism of 0.5 mM malate more than 0.01 mM. These included methionine sulfoximine, glutamate, malonate, -cyano-4-hydroxycinnamate and ouabain. Both the biphasic kinetics and the differential action of many of the effectors on the14CO2 production from 0.01 mM and 0.5 mM malate provide evidence for the presence of more than one pool of malate metabolism in cultured rat brain astrocytes.This data was presented in part at the meeting of the Federation of American Societies for Experimental Biology in Las Vegas, Nevada, May 1988.  相似文献   
644.
Primers suitable for the amplification of the gene encoding the class 1 outer membrane protein of Neisseria meningitidis by the polymerase chain reaction (PCR) were designed from published DNA sequences and used to study the gene in eight meningococcal strains of different serogroup, serotype and subtype. At high annealing stringency one product, shown to correspond to the class 1 protein gene, was amplified from each strain. For three strains an additional smaller product, provisionally identified as the gene encoding the class 3 outer membrane protein, was amplified at lower annealing stringencies. Nucleotide sequence analysis of the PCR products corresponding to the class 1 proteins established the differences in the primary structure of the proteins between each of the subtypes and other outer-membrane proteins from Neisseria spp. These differences impose constraints on possible structural models of these proteins. Most amino acid sequence variation occurred in two domains of between 8 and 17 amino acids; there was an additional region which varied mainly between classes of outer membrane protein and there were nine conserved regions. Using appropriate primers it was possible to distinguish between class 1 outer membrane protein genes from strains of different subtypes by the PCR.  相似文献   
645.
646.
Three fluorescent, lipophilic, heterocyclic antioxidants were incorporated into lipid bilayers and exposed to depth-dependent nitroxyl fatty acid quenchers. The Stern-Volmer plots curved upward at low quencher concentrations. Quantitative analysis of the results showed that this behavior is consistent with complex formation between quencher and fluorescent antioxidant, where the complex is 2-3 times more fluorescent than the parent fluorophore. At higher quencher concentrations, both free antioxidant and 'bright complex' are quenched dynamically, albeit quenching of the latter is less efficient. The complex probably results from ionic, hydrogen bond and pi-pi interactions. Formation of such a 'bright complex' is also observable in a homogeneous solution of the reactants in cyclohexane. Additional evidence for the complexation of these antioxidants with fatty acids in lipid bilayers is provided by the fact that energy transfer from the antioxidants to anthroyloxy fatty acids occurs at surface concentrations where radiative energy transfer between free molecules should be not be efficient. For directly probing the relative depths of these fluorophores in lipid bilayers we used the aqueous quenchers acrylamide and iodide. They showed that in terms of increasing depth in the bilayer, the order was U-78, 517f < U-78,518e < U-75,412e. Our results, in toto, demonstrate that the Lazaroid antioxidants are incorporated into the lipid bilayer where they occupy strictly defined positions and orientations. Complexation with fatty acyl chains should be mechanistically relevant, since it may enhance antioxidant activity by hindering free radical chain propagation.  相似文献   
647.
The production of reactive oxygen species in skeletal muscle is linked with muscle fatigue. This study investigated the effects of the antioxidant compound N-acetylcysteine (NAC) on muscle cysteine, cystine, and glutathione and on time to fatigue during prolonged, submaximal exercise in endurance athletes. Eight men completed a double-blind, crossover study, receiving NAC or placebo before and during cycling for 45 min at 71% peak oxygen consumption (VO2 peak) and then to fatigue at 92% VO2 peak. NAC was intravenously infused at 125 mg.kg(-1).h(-1) for 15 min and then at 25 mg.kg(-1).h(-1) for 20 min before and throughout exercise. Arterialized venous blood was analyzed for NAC, glutathione status, and cysteine concentration. A vastus lateralis biopsy was taken preinfusion, at 45 min of exercise, and at fatigue and was analyzed for NAC, total glutathione (TGSH), reduced glutathione (GSH), cysteine, and cystine. Time to fatigue at 92% VO2 peak was reproducible in preliminary trials (coefficient of variation 5.6 +/- 0.6%) and with NAC was enhanced by 26.3 +/- 9.1% (NAC 6.4 +/- 0.6 min vs. Con 5.3 +/- 0.7 min; P <0.05). NAC increased muscle total and reduced NAC at both 45 min and fatigue (P <0.005). Muscle cysteine and cystine were unchanged during Con, but were elevated above preinfusion levels with NAC (P <0.001). Muscle TGSH (P <0.05) declined and muscle GSH tended to decline (P=0.06) during exercise. Both were greater with NAC (P <0.05). Neither exercise nor NAC affected whole blood TGSH. Whereas blood GSH was decreased and calculated oxidized glutathione increased with exercise (P <0.05), both were unaffected by NAC. In conclusion, NAC improved performance in well-trained individuals, with enhanced muscle cysteine and GSH availability a likely mechanism.  相似文献   
648.
Membrane excitability is a critical regulatory step in skeletal muscle contraction and is modulated by local ionic concentrations, conductances, ion transporter activities, temperature, and humoral factors. Intense fatiguing contractions induce cellular K(+) efflux and Na(+) and Cl(-) influx, causing pronounced perturbations in extracellular (interstitial) and intracellular K(+) and Na(+) concentrations. Muscle interstitial K(+) concentration may increase 1- to 2-fold to 11-13 mM and intracellular K(+) concentration fall by 1.3- to 1.7-fold; interstitial Na(+) concentration may decline by 10 mM and intracellular Na(+) concentration rise by 1.5- to 2.0-fold. Muscle Cl(-) concentration changes reported with muscle contractions are less consistent, with reports of both unchanged and increased intracellular Cl(-) concentrations, depending on contraction type and the muscles studied. When considered together, these ionic changes depolarize sarcolemmal and t-tubular membranes to depress tetanic force and are thus likely to contribute to fatigue. Interestingly, less severe local ionic changes can also augment subtetanic force, suggesting that they may potentiate muscle contractility early in exercise. Increased Na(+)-K(+)-ATPase activity during exercise stabilizes Na(+) and K(+) concentration gradients and membrane excitability and thus protects against fatigue. However, during intense contraction some Na(+)-K(+) pumps are inactivated and together with further ionic disturbances, likely precipitate muscle fatigue.  相似文献   
649.
Major injury is widely thought to predispose the injured host to opportunistic infections. This idea is supported by animal studies showing that major injury causes reduced resistance to polymicrobial sepsis induced by cecal ligation and puncture. Although cecal ligation and puncture represents a clinically relevant sepsis model, we wanted to test whether injury might also lead to greater susceptibility to peritoneal infection caused by a single common pathogen, Escherichia coli. Contrary to our expectation, we show herein that the LD(50) for sham-injured mice was 10(3) CFU of E. coli, whereas the LD(50) for burn-injured mice was 50 x 10(3) CFU at 7 days postinjury. This injury-associated enhanced resistance was apparent as early as 1 day after injury, and maximal resistance was observed at days 7 and 14. We found that burn-injured mice had higher numbers of circulating neutrophils and monocytes than did sham mice before infection and that injured mice were able to recruit greater numbers of neutrophils to the site of infection. Moreover, the peritoneal neutrophils in burn-injured mice were more highly activated than neutrophils from sham mice as determined by Mac-1 expression, superoxide generation, and bactericidal activity. Our findings suggest that the enhanced innate immune response that develops following injury, although it is commonly accepted as the mediator of the detrimental systemic inflammatory response syndrome, may also, in some cases, benefit the injured host by boosting innate immune antimicrobial defenses.  相似文献   
650.
Mutations in genes encoding desmosomal proteins have been implicated in the pathogenesis of heart and skin diseases. This has led to the hypothesis that defective cell-cell adhesion is the underlying cause of injury in tissues that repeatedly bear high mechanical loads. In this study, we examined the effects of two different mutations in plakoglobin on cell migration, stiffness, and adhesion. One is a C-terminal mutation causing Naxos disease, a recessive syndrome of arrhythmogenic right ventricular cardiomyopathy (ARVC) and abnormal skin and hair. The other is an N-terminal mutation causing dominant inheritance of ARVC without cutaneous abnormalities. To assess the effects of plakoglobin mutations on a broad range of cell mechanical behavior, we characterized a model system consisting of stably transfected HEK cells which are particularly well suited for analyses of cell migration and adhesion. Both mutations increased the speed of wound healing which appeared to be related to increased cell motility rather than increased cell proliferation. However, the C-terminal mutation led to dramatically decreased cell-cell adhesion, whereas the N-terminal mutation caused a decrease in cell stiffness. These results indicate that different mutations in plakoglobin have markedly disparate effects on cell mechanical behavior, suggesting complex biomechanical roles for this protein.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号