首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   141篇
  免费   8篇
  149篇
  2018年   2篇
  2016年   2篇
  2015年   7篇
  2013年   4篇
  2012年   8篇
  2011年   7篇
  2010年   5篇
  2009年   2篇
  2008年   5篇
  2007年   5篇
  2006年   4篇
  2005年   3篇
  2004年   1篇
  2002年   4篇
  2001年   4篇
  2000年   2篇
  1999年   9篇
  1998年   2篇
  1997年   1篇
  1996年   5篇
  1994年   3篇
  1993年   3篇
  1992年   5篇
  1991年   4篇
  1990年   4篇
  1989年   3篇
  1988年   7篇
  1987年   4篇
  1986年   5篇
  1985年   2篇
  1984年   1篇
  1982年   4篇
  1981年   3篇
  1980年   1篇
  1979年   3篇
  1978年   3篇
  1977年   3篇
  1975年   1篇
  1974年   2篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
  1969年   3篇
排序方式: 共有149条查询结果,搜索用时 15 毫秒
11.
12.
13.
Epithelial cells, which express FGFR2IIIb, bind and respond to FGF-1, FGF-7 and FGF-10, but not FGF-2. Stromal cells, which bind and respond to FGF-1 and FGF-2, but not FGF-7 and FGF-10, express FGFR2IIIc or FGFR1IIIc. Here we show that when both isolated FGFR2betaIIIb and FGFR2betaIIIc or their common Ig module II are allowed to affinity select heparin from a mixture, the resultant binary complexes bound FGF-1, FGF-2, and FGF-7 with nearly equal affinity. In addition, FGF-2 and FGF-7 bound to both heparin-Ig module IIIb and IIIc complexes, but FGF-1 bound to neither Ig module III. The results show that in isolation both Ig modules II and III of FGFR2 can interact with heparin and that each exhibits a binding site for FGF. We suggest that the specificity of FGFR2IIIb and FGFR2IIIc is dependent on the cell membrane environment and heparin/heparan sulfate. Ig modules II and III cooperate both within monomers and across dimers with cellular heparan sulfates to confer cell type-dependent specificity of the FGFR complex for FGF.  相似文献   
14.
Lack of tissue-specific differentiated functions of cells in tissue culture, once thought to be due to “dedifferentiation”, was shown to be due to selective overgrowth of fibroblasts by a series of simple experiments that challenged the prevailing dogma. Following this insight, enrichment culture techniques (alternate animal and culture passage) were designed to give functionally differentiated tumor cells selective advantage over the fibroblasts. These experiments resulted in the derivation of a large number of functionally differentiated clonal strains of a range of cell types, providing the final point of destruction of the dogma of “dedifferentiation.” Instead, the hypothesis was proposed that cells in culture accurately represent cells in vivo, but without the complex in vivo environment. With the development of hormonally defined media and its combination with functionally differentiated clonal cell lines, this concept has been strengthened and the potential of tissue culture studies has been greatly augmented. Hormonally defined media allow the culture of cell types that cannot be grown in conventional, serum-supplemented media. These approaches demonstrate that hormonal responses and dependencies can be discovered in culture. Following this thinking and the discovery of hormonal dependencies of cancer cells has led to a new rationale for therapy. Tissue culture and cell technology continue to play an important role in solving human health problems.  相似文献   
15.
The cytotoxic T lymphocyte antigen-4 (CTLA-4)-blocking antibody ipilimumab induces immune-mediated long-term control of metastatic melanoma in a fraction of patients. Although ipilimumab undoubtedly exerts its therapeutic effects via immunostimulation, thus far clinically useful, immunologically relevant biomarkers that predict treatment efficiency have been elusive. Here, we show that neutralization of IL-2 or blocking the α and β subunits of the IL-2 receptor (CD25 and CD122, respectively) abolished the antitumor effects and the accompanying improvement of the ratio of intratumoral T effector versus regulatory cells (Tregs), which were otherwise induced by CTLA-4 blockade in preclinical mouse models. CTLA-4 blockade led to the reduction of a suppressive CD4+ T cell subset expressing Lag3, ICOS, IL-10 and Egr2 with a concomitant rise in IL-2-producing effector cells that lost FoxP3 expression and accumulated in regressing tumors. While recombinant IL-2 improved the therapeutic efficacy of CTLA-4 blockade, the decoy IL-2 receptor α (IL-2Rα, sCD25) inhibited the anticancer effects of CTLA-4 blockade. In 262 metastatic melanoma patients receiving ipilimumab, baseline serum concentrations of sCD25 represented an independent indicator of overall survival, with high levels predicting resistance to therapy. Altogether, these results unravel a role for IL-2 and IL-2 receptors in the anticancer activity of CTLA-4 blockade. Importantly, our study provides the first immunologically relevant biomarker, namely elevated serum sCD25, that predicts resistance to CTLA-4 blockade in patients with melanoma.  相似文献   
16.
Prostate stem cells (P-SCs) are capable of giving rise to all three lineages of prostate epithelial cells, including basal, luminal, and neuroendocrine cells. Multiple methods have been used to identify P-SCs in adult prostates. These include in vivo renal capsule implantation of a single epithelial cell with urogenital mesenchymal cells, in vitro prostasphere and organoid cultures, and lineage tracing with castration-resistant Nkx3.1 expression (CARN), in conjunction with expression of cell type-specific markers. Both organoid culture and CARN tracing show the existence of P-SCs in the luminal compartment. Although prostasphere cells predominantly express basal cell-specific cytokeratin and P63, the lineage of prostasphere-forming cells in the P-SC hierarchy remains to be determined. Using lineage tracing with P63CreERT2, we show here that the sphere-forming P-SCs are P63-expressing cells and reside in the basal compartment. Therefore we designate them as basal P-SCs (P-bSCs). P-bSCs are capable of differentiating into AR+ and CK18+ organoid cells, but organoid cells cannot form spheres. We also report that prostaspheres contain quiescent stem cells. Therefore, the results show that P-bSCs represent stem cells that are early in the hierarchy of overall prostate tissue stem cells. Understanding the contribution of the two types of P-SCs to prostate development and prostate cancer stem cells and how to manipulate them may open new avenues for control of prostate cancer progression and relapse.  相似文献   
17.
Although the fibroblast growth factor (FGF) signaling axis plays important roles in cell survival, proliferation, and differentiation, the molecular mechanism underlying how the FGF elicits these diverse regulatory signals is not well understood. By using the Frs2α null mouse embryonic fibroblast (MEF) in conjunction with inhibitors to multiple signaling pathways, here we report that the FGF signaling axis activates mTOR via the FGF receptor substrate 2α (FRS2α)-mediated PI3K/Akt pathway, and suppresses autophagy activity in MEFs. In addition, the PI3K/Akt pathway regulated mTOR is crucial for the FGF signaling axis to suppress autophagy in MEFs. Since autophagy has been proposed to play important roles in cell survival, proliferation, and differentiation, the findings suggest a novel mechanism for the FGF signaling axis to transmit regulatory signals to downstream effectors.  相似文献   
18.
Variations in sulfation of heparan sulfate (HS) affect interaction with FGF, FGFR, and FGF-HS-FGFR signaling complexes. Whether structurally distinct HS motifs are at play is unclear. Here we used stabilized recombinant FGF7 as a bioaffinity matrix to purify size-defined heparin oligosaccharides. We show that only 0.2%-4% of 6 to 14 unit oligosaccharides, respectively, have high affinity for FGF7 based on resistance to salt above 0.6M NaCl. The high affinity fractions exhibit highest specific activity for interaction with FGFR2IIIb and formation of complexes of FGF7-HS-FGFR2IIIb. The majority fractions with moderate (0.30-0.6M NaCl), low (0.14-0.30M NaCl) or no affinity at 0.14M NaCl for FGF7 supported no complex formation. The high affinity octasaccharide mixture exhibited predominantly 7- and 8-sulfated components (7,8-S-OctaF7) and formed FGF7-HS-FGFR2IIIb complexes with highest specific activity. Deduced disaccharide analysis indicated that 7,8-S-OctaF7 comprised of DeltaHexA2SGlcN6S in a 2:1 ratio to a trisulfated and a variable unsulfated or monosulfated disaccharide. The inactive octasaccharides with moderate affinity for FGF7 were much more heterogenous and highly sulfated with major components containing 11 or 12 sulfates comprised of predominantly trisulfated disaccharides. This suggests that a rare undersulfated motif in which sulfate groups are specifically distributed has highest affinity for FGF7. The same motif also exhibits structural requirements for high affinity binding to dimers of FGFR2IIIb prior to binding FGF7 to form FGF7-HS-FGFR2IIIb complexes. In contrast, the majority of more highly sulfated HS motifs likely play FGFR-independent roles in stability and control of access of FGF7 to FGFR2IIIb in the tissue matrix.  相似文献   
19.
Zhang J  Liu J  Liu L  McKeehan WL  Wang F 《Autophagy》2012,8(4):690-691
The fibroblast growth factor (FGF) signaling axis plays important roles in heart development. Yet, the molecular mechanism by which the FGF regulates cardiogenesis is not fully understood. Using genetically engineered mouse and in vitro cultured embryoid body (EB) models, we demonstrate that FGF signaling suppresses premature differentiation of heart progenitor cells, as well as autophagy in outflow tract (OFT) myocardiac cells. The FGF also promotes mesoderm differentiation in embryonic stem cells (ESCs) but inhibits cardiomyocyte differentiation of the mesoderm cells at later stages. Furthermore, inhibition of FGF signaling increases myocardial differentiation and autophagy in both ex vivo cultured embryos and EBs, whereas activation of autophagy promotes myocardial differentiation. Thus, a link between FGF signals preventing premature differentiation of heart progenitor cells and suppression of autophagy has been established. These findings provide the first evidence that autophagy plays a role in heart progenitor differentiation, and suggest a new venue to regulate stem/progenitor cell differentiation.  相似文献   
20.
成纤维细胞生长因子受体(FGFR)介导的SNT1(亦称为FRS2)底物磷酸化具有宿主细胞以及受体特异性。为探明这种宿主细胞特异性的决定因素,我们构建了1个FGFR2Ⅲb/R1嵌合受体。该嵌合受体具有1个FGFR2Ⅲb的胞外片段及1个FGFR1蛋白质酪氨酸激酶片断。当表达在3T3细胞(内源性受体为FGFR1并能强烈响应FGFR1的信号)以及DTE-R1/100细胞时,该嵌合受体能即刻诱导SNT1磷酸化。DTE-R1/100细胞为经长期培养的带有外源性FGFR1的非恶性前列腺肿瘤上皮细胞(DTE)并已获得未转化DTE细胞所不具备的FGFR1信号响应性。与此相反,当表达在非转化DTE细胞或未经长期培养的FGFR1转化细胞(DTE-R1)时,FGFR2Ⅲb/R1嵌合受体则无法诱导SNT1磷酸化。我们曾报导DTE细胞对FGFR1介导的SNT1磷酸化活力及其刺激细胞生长信号的响应性是一种获得性的性质,这种性质的获得与细胞恶化是紧密联系在一起的。在此我们进一步证明FGFR介导的SNT1磷酸化具有宿主细胞特异性。这些结果表明细胞内围绕着激酶的微环境而不是细胞外环境决定了SNT1是否可为FGFR1所磷酸化。而且,长期受外源性FGFR1刺激诱发DTE细胞内微环境的变化,从而使表达在DTE细胞里的FGFR1激酶可强烈地磷酸化SNT1。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号