首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   967篇
  免费   161篇
  2021年   19篇
  2020年   5篇
  2019年   5篇
  2018年   9篇
  2017年   6篇
  2016年   13篇
  2015年   34篇
  2014年   31篇
  2013年   43篇
  2012年   52篇
  2011年   57篇
  2010年   37篇
  2009年   31篇
  2008年   42篇
  2007年   51篇
  2006年   37篇
  2005年   34篇
  2004年   29篇
  2003年   39篇
  2002年   35篇
  2001年   31篇
  2000年   32篇
  1999年   27篇
  1998年   15篇
  1997年   9篇
  1996年   17篇
  1995年   15篇
  1994年   10篇
  1993年   13篇
  1992年   26篇
  1991年   32篇
  1990年   22篇
  1989年   16篇
  1988年   18篇
  1987年   11篇
  1986年   16篇
  1985年   20篇
  1984年   13篇
  1983年   21篇
  1982年   26篇
  1981年   10篇
  1980年   8篇
  1979年   16篇
  1978年   8篇
  1977年   9篇
  1973年   9篇
  1971年   5篇
  1970年   6篇
  1969年   9篇
  1967年   5篇
排序方式: 共有1128条查询结果,搜索用时 156 毫秒
951.
Ion channel mapping techniques are described and the results for two fungal organisms, Saprolegnia ferax and Neurospora crassa, are presented. In these species, two channel types have been characterized, stretch-activated channels exhibiting significant calcium permeability and spontaneous channels having significant potassium permeability. Two distinct analyses of patch clamp data, analysis of channel self-clustering and association between different channel types, and localization along the hyphae, reveal significant differences between the two organisms. S. ferax maintains a tip-high gradient of both channel types which is lost after disruption of the actin cytoskeleton. There is significant self-clustering of the channels, as well as interactions between channel types. N. crassa on the other hand does not maintain tip-high gradients, and clustered distributions are observed only for the stretch-activated channels. In terms of physiological roles, evidence is quite strong that the stretch-activated channels function as a growth sensor in S. ferax, but have an unknown function in N. crassa. In both organisms, the potassium permeable channels presumably function in potassium uptake. The differences between these two organisms may be due, in part, to differences in their normal environment: aquatic versus terrestrial. Copyright 1998 Academic Press.  相似文献   
952.
Endogenous nitric oxide (NO) influences acetylcholine-inducedbronchovascular dilation in sheep and is a mediator of the airway smooth muscle inhibitory nonadrenergic, noncholinergic neural responsein several species. This study was designed to determine the importanceof NO as a neurally derived modulator of ovine airway and bronchialvascular smooth muscle. We measured the response of pulmonaryresistance (RL) and bronchialblood flow (br) to vagal stimulationin 14 anesthetized, ventilated, open-chest sheep duringthe following conditions: 1)control; 2) infusion of the -agonist phenylephrine to reduce baseline br bythe same amount as would be produced by infusion ofN-nitro-L-arginine(L-NNA), a NO synthaseinhibitor; 3) infusion ofL-NNA(102 M); and4) after administration of atropine(1.5 mg/kg). The results showed that vagal stimulation produced anincrease in RL andbr in periods 1, 2, and 3 (P < 0.01) that was not affected byL-NNA. Afteratropine was administered, there was no increase inbr or RL. Invitro experiments on trachealis smooth muscle contracted with carbachol showed no effect ofL-NNA on neural relaxation butshowed a complete blockade with propranolol(P < 0.01). In conclusion, thevagally induced airway smooth muscle contraction and bronchial vasculardilation are not influenced by NO, and the sheep's trachealis muscle,unlike that in several other species, does not have inhibitorynonadrenergic, noncholinergic innervation.

  相似文献   
953.
E R Johnson  D B McKay 《Biochemistry》1999,38(33):10823-10830
ATP binding induces a conformational change in 70-kDa heat shock proteins (Hsp70s) that facilitates release of bound polypeptides. Using the bovine heat shock cognate protein (Hsc70) as a representative of the Hsp70 family, we have characterized the effect of mutations on the coupling between ATP binding and the nucleotide-induced conformational change. Steady-state solution small-angle X-ray scattering and kinetic fluorescence measurements on a 60-kDa fragment of Hsc70 show that point mutations K71M, E175S, D199S, and D206S in the nucleotide binding cleft impair the ability of ATP to induce a conformational change. A secondary mutation in the peptide binding domain, E543K, "rescues" the ATP-induced transition for three of these mutations (E175S/E543K, D199S/E543K, and D206S/E543K) but not for K71M/E543K. Analysis of kinetics of the ATPase cycle confirm that these effects do not result from unexpectedly rapid ATP hydrolysis or slow ATP binding. Crystallographic structures of E175S, D199S, and D206S mutant ATPase fragment proteins show that the mutations do not perturb the tertiary structure of the protein but do significantly alter the protein-ligand interactions, due in part to an apparent charge compensation effect whereby mutating a (probably) negatively charged carboxyl group to a neutral serine displaces a K+ ion from the nucleotide binding cleft in two out of three cases (E175S and D199S but not D206S).  相似文献   
954.
The kinetics and energetics of the binding of three troponin-I peptides, corresponding to regions 96-131 (TnI96-131), 96-139 (TnI96-139), and 96-148 (TnI96-148), to skeletal chicken troponin-C were investigated using multinuclear, multidimensional NMR spectroscopy. The kinetic off-rate and dissociation constants for TnI96-131 (400 s-1, 32 microM), TnI96-139 (65 s-1, <1 microM), and TnI96-148 (45 s-1, <1 microM) binding to TnC were determined from simulation and analysis of the behavior of 1H,15N-heteronuclear single quantum correlation NMR spectra taken during titrations of TnC with these peptides. Two-dimensional 15N-edited TOCSY and NOESY spectroscopy were used to identify 11 C-terminal residues from the 15N-labeled TnI96-148 that were unperturbed by TnC binding. TnI96-139 labeled with 13C at four positions (Leu102, Leu111, Met 121, and Met134) was complexed with TnC and revealed single bound species for Leu102 and Leu111 but multiple bound species for Met121 and Met134. These results indicate that residues 97-136 (and 96 or 137) of TnI are involved in binding to the two domains of troponin-C under calcium saturating conditions, and that the interaction with the regulatory domain is complex. Implications of these results in the context of various models of muscle regulation are discussed.  相似文献   
955.
The leadzyme is a small RNA motif that catalyzes a site-specific, Pb2+-dependent cleavage reaction. As such, it is an example of a metal-dependent RNA enzyme. Here we describe the X-ray crystallographic structure of the leadzyme, which reveals two independent molecules per asymmetric unit. Both molecules feature an internal loop in which a bulged purine base stack twists away from the helical stem. This kinks the backbone, rendering the phosphodiester bond susceptible to cleavage. The independent molecules have different conformations: one leadzyme copy coordinates Mg2+, whereas the other binds only Ba2+ or Pb2+. In the active site of the latter molecule, a single Ba2+ ion coordinates the 2'-OH nucleophile, and appears to mimic the binding of catalytic lead. These observations allow a bond cleavage reaction to be modeled, which reveals the minimal structural features necessary for catalysis by this small ribozyme.  相似文献   
956.
Brain stem cells change their identity   总被引:1,自引:0,他引:1  
McKay RD 《Nature medicine》1999,5(3):261-262
  相似文献   
957.
The complex chemical speciation of Fe in aquatic systems and the uncertainties associated with biological assimilation of Fe species make it difficult to assess the bioavailability of Fe to phytoplankton in relation to total dissolved Fe concentrations in natural waters. We developed a cyanobacterial Fe‐responsive bioreporter constructed in Synechococcus sp. strain PCC 7942 by fusing the Fe‐responsive isiAB promoter to Vibrio harveyi luxAB reporter genes. A comprehensive physiological characterization of the bioreporter has been made in defined Fraquil medium at free ferric ion concentrations ranging from pFe 21.6 to pFe 19.5. Whereas growth and physiological parameters are largely constrained over this range of Fe bioavailability, the bioreporter elicits a luminescent signal that varies in response to Fe deficiency. A dose‐response characterization of bioreporter luminescence made over this range of Fe3 + bioavailability demonstrates a sigmoidal response with a dynamic linear range extending between pFe 21.1 and pFe 20.6. The applicability of using this Fe bioreporter to assess Fe availability in the natural environment has been tested using water samples from Lake Huron (Laurentian Great Lakes). Parallel assessment of dissolved Fe and bioreporter response from these samples reinforces the idea that measures of dissolved Fe should not be considered alone when assessing Fe availability to phytoplankton communities.  相似文献   
958.
A strain of the yeast-like fungus Aureobasidium pullulans was grown on whey to produce an extracellular protease. The protease was totally inhibited by the serine inhibitor, phenyl methyl sulphonyl fluoride (PMSF), and partially inhibited by the chelating agent EDTA. The enzyme showed maximal activity in the alkaline range with an optimum pH of 9·5–10·5. The optimum temperature for protease activity was 41C. As well as being active against the non-specific proteolytic substrate Azocoll, the protease readily degraded purified α-casein. A molecular weight of 27000 ± 350 was determined for the protease using gel filtration chromatography.  相似文献   
959.
Summary A strain of the yeastCandida guilliermondii has been shown to produce citric acid from galactose to a similar extent, and at a similar rate, as from glucose. At an initial concentration of 36 g/l of either glucose or galactose, citric acid production exceeds 13 g/l. When galactose and glucose are present in a mixture, however, galactose utilization is delayed until most of the glucose has been utilized, providing evidence for catabolite repression.  相似文献   
960.
Generation of diastereomeric phosphonate ester adducts of chymotrypsin was evidenced for the first time by 31P NMR and spectrophotometric kinetic measurements. 31P NMR signals were recorded for 4-nitrophenyl 2-propyl methylphosphonate (IMN) at 32.2 ppm and for its hydrolysis product at 26.3 ppm downfield from phosphoric acid. The inhibition of α-chymotrypsin at pH > 8.0 by the faster reacting enantiomer of IMN or 2-propyl methylphosphonochloridate (IMCl), or other phosphonate ester analogs of these compounds, all caused a ~6.0 ppm downfield shift of the 31P signal to the 39–40 ppm region. IMN, when applied below the stoichiometric amount of chymotrypsin, under the same conditions, generated two signals, at 39.0 and at 37.4 ppm. Scans accumulated in hourly intervals showed the decomposition of both diastereomers, with approximate half-lives of 12 h at pH 8.0 and 22°C, into a species with a resonance at 35.5 ppm. The most likely reaction to account for the appearance of this new peak is the enzymic dealkylation of the isopropyl group from the covalently bound phosphonate ester. We base this conclusion mostly on the similarity of the upfield shift to the hydrolysis of phosphonate esters. Contrary to experience with phosphate ester adducts of serine proteases, no signal was detected higher than 25.0 ppm downfield from phosphoric acid for several phosphonate ester adducts of chymotrypsin and in no case did the resonance for the adduct shift further downfield in the course of the experiments. © 1993 Wiley-Liss, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号