首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   206篇
  免费   28篇
  2020年   4篇
  2019年   2篇
  2016年   4篇
  2015年   2篇
  2013年   12篇
  2012年   5篇
  2011年   12篇
  2010年   9篇
  2009年   10篇
  2008年   4篇
  2007年   9篇
  2006年   6篇
  2005年   4篇
  2004年   8篇
  2003年   8篇
  2002年   4篇
  2001年   8篇
  2000年   6篇
  1999年   6篇
  1998年   2篇
  1996年   2篇
  1995年   2篇
  1994年   6篇
  1993年   4篇
  1992年   4篇
  1991年   8篇
  1990年   5篇
  1989年   3篇
  1988年   4篇
  1987年   7篇
  1986年   6篇
  1985年   8篇
  1984年   2篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1980年   3篇
  1979年   6篇
  1978年   5篇
  1977年   5篇
  1974年   2篇
  1973年   2篇
  1970年   3篇
  1969年   3篇
  1968年   1篇
  1967年   2篇
  1966年   1篇
  1941年   1篇
  1928年   1篇
  1901年   1篇
排序方式: 共有234条查询结果,搜索用时 15 毫秒
81.
After cardiovascular intervention, smooth muscle cells (SMC) are directly exposed to blood flow and thus their behavior might be affected by fluid hemodynamic forces. The aim of this study was to determine the effect of fluid shear stress on the growth rate of SMC. Human aortic smooth muscle cells (hASMC) were seeded on fibronectin-coated glass slides and were exposed to different levels of shear stress using parallel plate flow chambers. After 24 h, cell numbers in the stationary and sheared cultures were measured by a Coulter counter. Results demonstrated that increasing shear stress significantly reduces the proliferation rate of hASMC (P < 0.05). Comparable lactate dehydrogenase levels in the media of stationary and flow cultures provided evidence that the reduction of cell number was not due to cell injury. Proliferating cell nuclear antigen (PCNA) immunofluorescence studies indicated that the cell cultures were not growth arrested 24 h after exposure to shear stress, and that the differences in PCNA staining between stationary control and flow cultures were comparable to the cell counts. (c) 1996 John Wiley & Sons, Inc.  相似文献   
82.
To define further the molecular basis for abnormal interactions of cord blood or neonatal neutrophils with endothelial cells in vitro, we studied neutrophil adhesion and migration under experimental conditions specifically designed to evaluate CD18-independent mechanisms. Unstimulated cord blood neutrophils of healthy term neonates demonstrated significantly diminished adhesion to IL-1-stimulated endothelial cell monolayers under conditions of shear stress (congruent to 1.85 dynes/cm2); overall levels of migration by neonatal cells were also significantly diminished, although the adherent subpopulation of these cells migrated relatively normally. A mAb (DREG-56) against the human homologue of the murine MEL-14 antigen (termed lectin-, epidermal growth factor-, complement binding domain-cell adhesion molecule-1 (LECAM-1), a member of the LEC-CAM family of adhesion molecules) markedly inhibited adhesion of healthy adult but not cord blood neutrophils. In additional assessments of endothelial cell adhesion or migration in the absence of shear forces, cord blood neutrophils demonstrated significantly diminished values compared to adult controls. Moreover, mAb DREG-56 significantly diminished adhesion of healthy adult but not cord blood suspensions in the presence or absence of the anti-CD18 mAb R15.7. Immunofluorescence assessments of unstimulated cord blood neutrophils or neutrophils of neonates 12 to 48 h of age showed dramatically diminished levels of surface LECAM-1 compared to adult neutrophils. Chemotactic stimuli (FMLP, 10 nM, 15 min) consistently "down-regulated" surface LECAM-1 on adult neutrophils to levels approximately 10% of unstimulated suspensions and comparable to those of most unstimulated neonatal suspensions. Moreover, FMLP stimuli elicited little or no down-regulation of LECAM-1 on neonatal cells. In comparative studies, endothelial cell adhesion of unstimulated cord blood or adult control neutrophils (assessed under conditions of flow) was directly related to levels of neutrophil surface LECAM-1. Although FMLP stimulation significantly diminished both adhesion and LECAM-1 surface levels of adult control cells, the adhesion and LECAM-1 expression observed with cord blood cells were not significantly influenced by this stimulus. The mechanisms underlying diminished LECAM-1 expression and LECAM-1-dependent adhesion of neonatal neutrophils and the physiologic significance of these abnormalities deserve investigation.  相似文献   
83.
The contributions of the canine neutrophil lectin adhesion molecule-1 (LECAM-1) (canine homologue of the murine MEL-14 Ag) in neutrophil-endothelial cell adhesion and transendothelial migration were studied using anti-LECAM-1 mAb, CL2/6, and SL1 under static conditions and at wall shear stresses of up to 1.85 dynes/cm2 (dpc). Both mAb were found to inhibit attachment of neutrophils to cytokine-stimulated canine jugular vein endothelium. The inhibitory effects of the anti-LECAM-1 mAb were more evident at a wall shear stress of 1.85 dpc (greater than 50%) than at 0.23 dpc or under static conditions (approximately 30%). In contrast the anti-CD18 mAb, R15.7, exhibited higher inhibitory ability at the lower shear stress and under static conditions with marginal inhibition of adhesion at 1.85 dpc. Anti-LECAM-1 and anti-CD18 mAb showed additive inhibitory effects at the lower wall shear stress and under static conditions. Chemotactic stimulation of the neutrophils caused rapid down-regulation of LECAM-1 from the neutrophil surface and reduced adhesion by 60% at a wall shear stress of 1.85 dpc. This inhibition was not additive to anti-LECAM-1 mAb. Pretreatment with CL2/6 or SL1 did not affect trans-endothelial migration of adherent neutrophils under any experimental conditions tested. Anti-CD18 mAb, however, blocked transendothelial migration by 98% and 56% under static condition and at a wall shear stress of 0.23 dpc, respectively. The results in this report indicate that canine LECAM-1 is involved in the initial adhesion of unstimulated neutrophils to cytokine-stimulated endothelial cells under flow, but in contrast to CD18-integrins, plays no role in the transendothelial migration.  相似文献   
84.
Erythrocytes exposed to subhemolytic shear stress in vitro exhibit decreased deformability as determined by a filtration method. Intracellular calcium content of these cells has been measured by atomic absorption spectroscopy and found to be 35 and 55% higher than controls (0.0157 μmol/ml packed red blood cells) after shear stress levels of 100 and 130 N/cm2, respectively. These alterations occur without significant changes in ATP level, intracellular magnesium content, cell volume, or morphology, and without large associated sodium and potassium fluxes. Results indicate that calcium may be responsible for or associated with changes in the viscoelastic properties of the red cell membrane caused by sublytic mechanical trauma.  相似文献   
85.
86.
An improved method is presented for the purification of 8 alpha-(N1-histidyl)riboflavin, 8 alpha-(N3-histidyl)riboflavin and their 2',5'-anhydro forms, which permits the isolation of sizeable quantities of each of these compounds from a synthetic mixture in pure form. Flavin peptides were isolated from the D-gluconate dehydrogenases of Pseudomonas aeruginosa and Pseudomonas fluorescens and from the 2-keto-D-gluconate dehydrogenase of Gluconobacter melanogenus. After conversion into the aminoacyl-riboflavin, the flavin in all three enzymes was identified as 8 alpha-(N3-histidyl)riboflavin. By sequential treatment with nucleotide pyrophosphatase and alkaline phosphatase, the flavin in each enzyme was shown to be in the dinucleotide form.  相似文献   
87.
88.
Spectrophotometric titration of pyridoxamine-pyruvate transaminase (EC 2.6.1.30) with pyridoxal at pH 7.15 gives four equivalent binding sites per tetramer. The pH dependence of the equilibrium constant for the association of 5'-deoxypyridoxal with the active site lysine residue was determined spectrophotometrically. These dissociation constants increase with increasing pH over the range pH 7.5-9 and are correlated with the values obtained from fast reactions kinetics (Gilmer, P. J., and Kirsch, J. F. (1977), Biochemistry 16 (following paper in this issue)). In addition to this specific reaction at an active site lysine residue, a second slower reaction at non-active site residues is observable at pH values greater than 8. The pH dependencies of the association and dissociation rate constants for this slow reaction were studied over the pH range 8 to 9 after blocking the active site by NaBH4 reduction of the pyridoxal adduct. The enzyme is stabilized and markedly activated by potassium ion.  相似文献   
89.
Polar solvents induce terminal differentiation in the human promyelocytic leukemia cell line HL-60. The present studies describe the functional changes that accompany the morphologic progression from promyelocytes to bands and poly-morphonuclear leukocytes (PMN) over 9 d of culture in 1.3 percent dimethylsulfoxide (DMSO). As the HL-60 cells mature, the rate of O(2-) production increase 18-fold, with a progressive shortening of the lag time required for activation. Hexosemonophosphate shunt activity rises concomitantly. Ingestin of paraffin oil droplets opsonized with complement or Ig increases 10-fold over 9 d in DMSO. Latex ingestion per cell by each morphologic type does not change significantly, but total latex ingestion by groups of cells increases with the rise in the proportion of mature cells with greater ingestion capacities. Degranulation, as measured by release of β-glucuronidase, lysozyme, and peroxidase, reaches maximum after 3-6 d in DMSO, then declines. HL-60 cells contain no detectable lactoferrin, suggesting that their secondary granules are absent or defective. However, they kill staphylococci by day 6 in DMSO. Morphologically immature cells (days 1-3 in DMSO) are capable of O(2-) generation, hexosemonophosphate shunt activity, ingestion, degranulation, and bacterial killing. Maximal performance of each function by cells incubated in DMSO for longer periods of time is 50-100 percent that of normal PMN. DMSO- induced differentiation of HL-60 cells is a promising model for myeloid development.  相似文献   
90.
Each flavoprotein subunit (PchF) of p-cresol methylhydroxylase (PCMH) has flavin adenine dinucleotide (FAD) covalently tethered to Tyr384. The PCMH structure suggests that Arg474 in PchF is required for self-catalytic covalent flavinylation and for substrate oxidation. The replacement of Arg474 with Lys was carried out to probe the subtleties of the role of Arg474 in these processes. In nearly all of the aspects examined, the mutant protein showed compromised properties relative to the wild-type protein, including the tenacity of noncovalent FAD binding to the apo-protein, the rate of covalent flavinylation, the affinity of the covalent flavoprotein for PchC (the cytochrome subunit), the k(cat) for substrate oxidation, and the affinity for substrate analogues in the formation of FAD-charge-transfer complexes (CT complexes). Nevertheless, because the mutant retains these attributes, the comparison allows for an examination of the role of this residue in the various properties of the enzyme. A correlation is proposed to exist between nu(m), the frequency for the absorbance maximum of the CT complex with a substrate analogue, and k(cat), the steady-state rate constant for oxidation of p-cresol by various forms of PCMH and PchF; both nu(m) and k(cat) can be expressed as functions of the ionization potential of the donor (I(D)) and the electron affinity of the acceptor (E(A)). This correlation is a better predictor of the rate constant for substrate oxidation than is the magnitude of the redox potential, E(m,7), of the bound FAD, which was determined for the various mutant enzyme species and compared with those of the wild type.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号