首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   315篇
  免费   24篇
  国内免费   1篇
  2022年   4篇
  2021年   5篇
  2019年   4篇
  2018年   8篇
  2016年   3篇
  2015年   11篇
  2014年   8篇
  2013年   9篇
  2012年   16篇
  2011年   15篇
  2010年   11篇
  2009年   13篇
  2008年   14篇
  2007年   14篇
  2006年   14篇
  2005年   7篇
  2004年   7篇
  2003年   6篇
  2002年   5篇
  2001年   13篇
  2000年   4篇
  1999年   4篇
  1998年   7篇
  1997年   3篇
  1996年   4篇
  1995年   3篇
  1994年   4篇
  1993年   9篇
  1992年   11篇
  1991年   9篇
  1990年   3篇
  1988年   5篇
  1987年   8篇
  1986年   5篇
  1984年   4篇
  1983年   4篇
  1982年   3篇
  1980年   5篇
  1978年   6篇
  1977年   3篇
  1976年   4篇
  1975年   3篇
  1974年   4篇
  1949年   2篇
  1939年   2篇
  1938年   2篇
  1937年   3篇
  1935年   2篇
  1933年   2篇
  1932年   2篇
排序方式: 共有340条查询结果,搜索用时 15 毫秒
41.
We present results from a detailed three-dimensional finite element analysis of the cranium and mandible of the Australian dingo (Canis lupus dingo) during a range of feeding activities and compare results with predictions based on two-dimensional methodology [Greaves, W.S., 2000. Location of the vector of jaw muscle force in mammals. Journal of Morphology 243, 293-299]. Greaves showed that the resultant muscle vector intersects the mandible line slightly posterior to the lower third molar (m3). Our work demonstrates that this is qualitatively correct, although the actual point is closer to the jaw joint. We show that it is theoretically possible for the biting side of the mandible to dislocate during unilateral biting; however, the bite point needs to be posterior to m3. Simulations show that reduced muscle activation on the non-biting side can considerably diminish the likelihood of dislocation with only a minor decrease in bite force during unilateral biting. By modulating muscle recruitment the animal may be able to maximise bite force whilst minimising the risk of dislocation.  相似文献   
42.
delta and delta' are required for assembly of the processivity factor beta(2) onto primed DNA in the DNA polymerase III holoenzyme-catalyzed reaction. We developed protocols for generating highly purified preparations of delta and delta'. In holoenzyme reconstitution assays, delta' could not be replaced by delta, tau, or gamma, even when either of the latter were present at a 10,000-fold molar excess. Likewise, delta could not be replaced by delta', tau, or gamma. Bacterial strains bearing chromosomal knockouts of either the holA(delta) or holB(delta') genes were not viable, demonstrating that both delta and delta' are essential. Western blots of isolated initiation complexes demonstrated the presence of both delta and delta'. However, in the absence of chipsi and single-stranded DNA-binding protein, a stable initiation complex lacking deltadelta' was isolated by gel filtration. Lack of delta-delta' decreased the rate of elongation about 3-fold, and the extent of processive replication was significantly decreased. Adding back delta-delta' but not chipsi, delta, or delta' alone restored the diminished activity, indicating that in addition to being key components required for the beta loading activity of the DnaX complex, deltadelta' is present in initiation complex and is required for processive elongation.  相似文献   
43.
B P Glover  C S McHenry 《Cell》2001,105(7):925-934
The DNA Polymerase III holoenzyme forms initiation complexes on primed DNA in an ATP-dependent reaction. We demonstrate that the nonhydrolyzable ATP analog, ATP gamma S, supports the formation of an isolable leading strand complex that loads and replicates the lagging strand only in the presence of ATP, beta, and the single-stranded DNA binding protein. The single endogenous DnaX complex within DNA polymerase III holoenzyme assembles beta onto both the leading and lagging strand polymerases by an ordered mechanism. The dimeric replication complex disassembles in the opposite order from which it assembled. Upon ATP gamma S-induced dissociation, the leading strand polymerase is refractory to disassembly allowing cycling to occur exclusively on the lagging strand. These results establish holoenzyme as an intrinsic asymmetric dimer with distinguishable leading and lagging strand polymerases.  相似文献   
44.
Uniparental disomy (UPD) is a rare condition in which a diploid offspring carries a chromosomal pair from a single parent. We now report the first two cases of UPD resulting in retinal degeneration. We identified an apparently homozygous loss-of-function mutation of RPE65 (1p31) in one retinal dystrophy patient and an apparently homozygous loss-of-function mutation of MERTK (2q14.1) in a second retinal dystrophy patient. In both families, the gene defect was present in the patient's heterozygous father but not in the patient's mother. Analysis of haplotypes in each nuclear kindred, by use of DNA polymorphisms distributed along both chromosomal arms, indicated the absence of the maternal allele for all informative markers tested on chromosome 1 in the first patient and on chromosome 2 in the second patient. Our results suggest that retinal degeneration in these individuals is due to apparently complete paternal isodisomy involving reduction to homoallelism for RPE65 or MERTK loss-of-function alleles. Our findings provide evidence for the first time, in the case of chromosome 2, and confirm previous observations, in the case of chromosome 1, that there are no paternally imprinted genes on chromosomes 1 and 2 that have a major effect on phenotype.  相似文献   
45.
The asymmetric dimeric polymerase hypothesis: a progress report   总被引:1,自引:0,他引:1  
In 1983, my laboratory first proposed that the DNA polymerase III holoenzyme is an asymmetric dimer with distinguishable leading and lagging strand polymerases. Here, I review progress by my laboratory and others in testing this hypothesis. To date, the hypothesis is supported by our demonstration of (i) an asymmetry in function of two populations of holoenzyme in solution in their ability to use the ATP analog, ATP gamma S, to support initiation complex formation, (ii) the stabilization of a dimeric polymerase structure by the tau subunit, (iii) allosteric communication between polymerase halves and (iv) the coexistence of gamma and the tau, subunits which share common sequences, within the same holoenzyme assemblies. This latter observation may provide a structural basis for holoenzyme asymmetry. I discuss the implications of the asymmetric dimer hypothesis to the solution of problems encountered by polymerases at the replication fork and delineate further tests required before the hypothesis can be firmly established.  相似文献   
46.
Glutamate overcomes the salt inhibition of DNA polymerase III holoenzyme   总被引:2,自引:0,他引:2  
Even though Escherichia coli can grow in media containing up to 1 M NaCl, one-fifth that amount of NaCl will completely inhibit the in vitro activity of DNA polymerase III holoenzyme. It has been established that the major intracellular ionic osmolytes are potassium and glutamate (Richey, B., Cayley, D. S., Mossing, M. C., Kolka, C., Anderson, C. F., Farrar, T. C., and Record, M. T., Jr. (1987) J. Biol. Chem. 262, 7157-7164). We have found that holoenzyme catalyzes replication efficiently in vitro in up to 1 M potassium glutamate. Two salt effects on the replication of single-stranded DNA were observed. At low salt replicative activity was enhanced and at high salt there was anion-specific inhibition. We have found that DNA polymerase III holoenzyme tolerated 10-fold higher concentrations of glutamate than chloride. The ability of various anions to extend the useful range of salt concentrations followed the order: phosphate less than chloride less than N-Ac-glutamate less than acetate less than glycine less than aspartate less than glutamate. With the exception of phosphate, this order followed the Hofmeister series indicating that the anion-specific effects were due to anions interacting at the protein-water interface at weak anion binding sites. Glutamate did not reverse the inhibition by chloride. The low salt enhancement and high salt inhibition effects were additive for the two anions indicating that they competed for common anion binding sites. The major salt-sensitive step was holoenzyme binding to template rather than the subsequent elongation reaction.  相似文献   
47.
C. H. Best  E. W. McHenry 《CMAJ》1940,43(2):163-164
  相似文献   
48.
E. W. McHenry 《CMAJ》1955,72(4):304-305
  相似文献   
49.
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号