首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   159篇
  免费   4篇
  2021年   4篇
  2016年   3篇
  2015年   4篇
  2014年   5篇
  2013年   5篇
  2012年   12篇
  2011年   6篇
  2010年   6篇
  2009年   8篇
  2008年   4篇
  2007年   8篇
  2006年   11篇
  2005年   9篇
  2004年   3篇
  2003年   7篇
  2002年   3篇
  2001年   3篇
  2000年   4篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1993年   1篇
  1992年   3篇
  1991年   3篇
  1990年   3篇
  1989年   2篇
  1987年   3篇
  1985年   3篇
  1984年   2篇
  1982年   1篇
  1981年   2篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1976年   4篇
  1975年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1968年   1篇
  1967年   1篇
  1964年   1篇
  1963年   1篇
  1961年   2篇
  1960年   1篇
  1957年   3篇
  1948年   1篇
  1943年   1篇
  1934年   1篇
排序方式: 共有163条查询结果,搜索用时 15 毫秒
31.
Small-molecule inhibitors of HIV integrase (HIV IN) have emerged as a promising new class of antivirals for the treatment of HIV/AIDS. The compounds currently approved or in clinical development specifically target HIV DNA integration and were identified using strand-transfer assays targeting the HIV IN/viral DNA complex. The authors have developed a second biochemical assay for identification of HIV integrase inhibitors, targeting the interaction between HIV IN and the cellular cofactor LEDGF/p75. They developed a luminescent proximity assay (AlphaScreen) designed to measure the association of the 80-amino-acid integrase binding domain of LEDGF/p75 with the 163-amino-acid catalytic core domain of HIV IN. This assay proved to be quite robust (with a Z' factor of 0.84 in screening libraries arrayed as orthogonal mixtures) and successfully identified several compounds specific for this protein-protein interaction.  相似文献   
32.
33.
34.
AMP-activated protein kinase (AMPK) has been postulated as a super-metabolic regulator, thought to exert numerous effects on skeletal muscle function, metabolism, and enzymatic signaling. Despite these assertions, little is known regarding the direct role(s) of AMPK in vivo, and results obtained in vitro or in situ are conflicting. Using a chronically catheterized mouse model (carotid artery and jugular vein), we show that AMPK regulates skeletal muscle metabolism in vivo at several levels, with the result that a deficit in AMPK activity markedly impairs exercise tolerance. Compared with wild-type littermates at the same relative exercise capacity, vascular glucose delivery and skeletal muscle glucose uptake were impaired; skeletal muscle ATP degradation was accelerated, and arterial lactate concentrations were increased in mice expressing a kinase-dead AMPKα2 subunit (α2-KD) in skeletal muscle. Nitric-oxide synthase (NOS) activity was significantly impaired at rest and in response to exercise in α2-KD mice; expression of neuronal NOS (NOSμ) was also reduced. Moreover, complex I and IV activities of the electron transport chain were impaired 32 ± 8 and 50 ± 7%, respectively, in skeletal muscle of α2-KD mice (p < 0.05 versus wild type), indicative of impaired mitochondrial function. Thus, AMPK regulates neuronal NOSμ expression, NOS activity, and mitochondrial function in skeletal muscle. In addition, these results clarify the role of AMPK in the control of muscle glucose uptake during exercise. Collectively, these findings demonstrate that AMPK is central to substrate metabolism in vivo, which has important implications for exercise tolerance in health and certain disease states characterized by impaired AMPK activation in skeletal muscle.The ubiquitously expressed serine/threonine AMP-activated protein kinase (AMPK)2 is an αβγ heterotrimer postulated to play a key role in the response to energetic stress (1, 2), because of its sensitivity to increased cellular AMP levels (3). Pharmacological activation of AMPK (primarily via the AMP analogue ZMP) increases catabolic processes such as GLUT4 translocation (4, 5), glucose uptake (6, 7), long chain fatty acid (LCFA) uptake (8), and substrate oxidation (6). Concomitantly, pharmacological activation of AMPK inhibits anabolic processes, and in skeletal muscle genetic reduction of the catalytic AMPKα2 subunit eliminates these pharmacological effects (912). Thus, AMPK has been proposed to act as a metabolic master switch (2, 13, 14). Physiologically, exercise at intensities sufficient to increase free cytosolic AMP (AMPfree) levels is a potent stimulus of AMPK, preferentially activating AMPKα2 in skeletal muscle (1517). The metabolic profile of skeletal muscle during moderate to high intensity exercise is remarkably similar to skeletal muscle in which AMPK has been pharmacologically activated (i.e. increases in catabolic processes). This is consistent with the hypothesis that AMPK activation is required for the metabolic response to increased cellular stress. Given this, it is surprising that the direct role(s) of skeletal muscle AMPK during exercise under physiological in vivo conditions is unknown.A number of studies have tried to attribute causality to the AMPK and metabolic responses to exercise using transgenic models. In mouse models in which AMPKα2 protein expression and/or activity has been impaired, contractions performed in isolated skeletal muscle in vitro, ex vivo, or in situ have demonstrated that skeletal muscle glucose uptake (MGU) is normal (9, 10), partially impaired (11, 18), or ablated (19). Furthermore, ex vivo skeletal muscle LCFA uptake and oxidation in response to contraction appears to be AMPK-independent (20, 21). A key limitation of these studies is that the experimental models were not physiological. Under in vivo conditions, mice expressing a kinase-dead (18) or inactive (22) AMPKα2 subunit in cardiac and skeletal muscle have impaired voluntary and maximal physical activity, respectively, indicative of a physiological role for AMPK during exercise. In this context, obese non-diabetic and diabetic individuals have impaired skeletal muscle AMPK activation during moderate intensity exercise (23) as well as during the post-exercise period (24), yet the contribution of this impairment to the disease state is unclear. Thus, in vivo studies are essential to define the role of AMPK in skeletal muscle during exercise.Physical exercise of a moderate intensity is an effective adjunct treatment for chronic metabolic diseases such as obesity and type 2 diabetes (25). Given the importance of elucidating the molecular mechanism(s) regulating skeletal muscle substrate metabolism during exercise and the putative role of AMPK as a critical mediator in this process, we tested the hypothesis that AMPKα2 is functionally linked to substrate metabolism in vivo.  相似文献   
35.
Microbial metabolic activity occurs at subzero temperatures in permafrost, an environment representing ∼25% of the global soil organic matter. Although much of the observed subzero microbial activity may be due to basal metabolism or macromolecular repair, there is also ample evidence for cellular growth. Unfortunately, most metabolic measurements or culture-based laboratory experiments cannot elucidate the specific microorganisms responsible for metabolic activities in native permafrost, nor, can bulk approaches determine whether different members of the microbial community modulate their responses as a function of changing subzero temperatures. Here, we report on the use of stable isotope probing with 13C-acetate to demonstrate bacterial genome replication in Alaskan permafrost at temperatures of 0 to −20 °C. We found that the majority (80%) of operational taxonomic units detected in permafrost microcosms were active and could synthesize 13C-labeled DNA when supplemented with 13C-acetate at temperatures of 0 to −20 °C during a 6-month incubation. The data indicated that some members of the bacterial community were active across all of the experimental temperatures, whereas many others only synthesized DNA within a narrow subzero temperature range. Phylogenetic analysis of 13C-labeled 16S rRNA genes revealed that the subzero active bacteria were members of the Acidobacteria, Actinobacteria, Chloroflexi, Gemmatimonadetes and Proteobacteria phyla and were distantly related to currently cultivated psychrophiles. These results imply that small subzero temperature changes may lead to changes in the active microbial community, which could have consequences for biogeochemical cycling in permanently frozen systems.  相似文献   
36.
37.

Background

The gut microbiota is now known to play an important role contributing to inflammatory-based chronic diseases. This study examined intestinal integrity/inflammation and the gut microbial communities in sedentary and exercising mice presented with a normal or high-fat diet.

Methods

Thirty-six, 6-week old C57BL/6NTac male mice were fed a normal or high-fat diet for 12-weeks and randomly assigned to exercise or sedentary groups. After 12 weeks animals were sacrificed and duodenum/ileum tissues were fixed for immunohistochemistry for occludin, E-cadherin, and cyclooxygenase-2 (COX-2). The bacterial communities were assayed in fecal samples using terminal restriction fragment length polymorphism (TRFLP) analysis and pyrosequencing of 16S rRNA gene amplicons.

Results

Lean sedentary (LS) mice presented normal histologic villi while obese sedentary (OS) mice had similar villi height with more than twice the width of the LS animals. Both lean (LX) and obese exercise (OX) mice duodenum and ileum were histologically normal. COX-2 expression was the greatest in the OS group, followed by LS, LX and OX. The TRFLP and pyrosequencing indicated that members of the Clostridiales order were predominant in all diet groups. Specific phylotypes were observed with exercise, including Faecalibacterium prausnitzi, Clostridium spp., and Allobaculum spp.

Conclusion

These data suggest that exercise has a strong influence on gut integrity and host microbiome which points to the necessity for more mechanistic studies of the interactions between specific bacteria in the gut and its host.  相似文献   
38.
39.
In 32 cases aneurysms of the aorta and peripheral arteries were resected and replaced by grafts. The results from the use of homografts in 18 cases were more satisfactory than with the use of Ivalon in 14 cases. The abdominal aorta was the most frequent location of aneurysms.The current mortality rate of 5.5 per cent for resection of unruptured abdominal aneurysms indicates that resection and grafting are an effective means of reducing the high mortality of untreated aneurysms. Five ruptured aneurysms were excised, with a mortality rate of 40 per cent. The uniformly fatal outcome of untreated ruptured abdominal aneurysms makes it obligatory for the surgeon to operate immediately after the diagnosis is first made.  相似文献   
40.
Hyperglycemia in the hospitalized setting is common, especially in patients that receive nutritional support either continuously or intermittently. As the liver and muscle are the major sites of glucose disposal, we hypothesized their metabolic adaptations are sensitive to the pattern of nutrient delivery. Chronically catheterized, well-controlled depancreatized dogs were placed on one of three isocaloric diets: regular chow diet once daily (Chow) or a simple nutrient diet (ND) that was given either once daily (ND-4) or infused continuously (ND-C). Intraportal insulin was infused to maintain euglycemia. After 5 days net hepatic (NHGU) and muscle (MGU) glucose uptake and oxidation were assessed at euglycemia (120 mg/dl) and hyperglycemia (200 mg/dl) in the presence of basal insulin. While hyperglycemia increased both NHGU and MGU in Chow, NHGU was amplified in both groups receiving ND. The increase was associated with enhanced activation of glycogen synthase, glucose oxidation and suppression of pyruvate dehydrogenase kinase-4 (PDK-4). Accelerated glucose-dependent muscle glucose uptake was only evident with ND-C. This was associated with a decrease in PDK-4 expression and an increase in AMP-activated protein kinase (AMPK) phosphorylation. Interestingly, ND-C markedly increased hepatic FGF-21 expression. Thus, augmentation of carbohydrate disposal in the liver, as opposed to the muscle, is not dependent on the pattern of nutrient delivery.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号