首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   393篇
  免费   67篇
  2024年   1篇
  2023年   2篇
  2022年   4篇
  2021年   10篇
  2020年   2篇
  2019年   3篇
  2018年   11篇
  2017年   6篇
  2016年   7篇
  2015年   22篇
  2014年   15篇
  2013年   20篇
  2012年   25篇
  2011年   31篇
  2010年   18篇
  2009年   24篇
  2008年   17篇
  2007年   26篇
  2006年   18篇
  2005年   13篇
  2004年   22篇
  2003年   6篇
  2002年   17篇
  2001年   11篇
  2000年   12篇
  1999年   11篇
  1998年   9篇
  1997年   9篇
  1996年   9篇
  1995年   6篇
  1994年   5篇
  1993年   2篇
  1992年   3篇
  1991年   6篇
  1990年   9篇
  1989年   8篇
  1988年   4篇
  1987年   5篇
  1986年   3篇
  1985年   4篇
  1984年   2篇
  1983年   5篇
  1982年   4篇
  1981年   1篇
  1980年   5篇
  1979年   1篇
  1978年   1篇
  1977年   4篇
  1972年   1篇
排序方式: 共有460条查询结果,搜索用时 15 毫秒
71.
A flux analysis of glucose metabolism in the filamentous fungus Rhizopus oryzae was achieved using a specific radioactivity curve-matching program, TFLUX. Glycolytic and tricarboxylic acid cycle intermediates labeled through the addition of extracellular [U-14C]glucose were isolated and purified for specific radioactivity determinations. This information, together with pool sizes and the rates of glucose utilization and end product production, provided input for flux maps of the metabolic network under two different experimental conditions. Based upon the flux analysis of this system, a mutant of R. oryzae with higher lactate and lower ethanol yields than the parent was sought for and found.  相似文献   
72.
Carotenoids produce the brilliant red, orange, and yellow colors of many animals. However, melanin pigments can also confer some of these same hues. Because carotenoid and melanin colors are produced in different ways and may serve different signaling functions, either within or between species, it is important to establish whether one or both types of pigment are responsible for coloration. We have discovered what appears to be an evolutionary switch from carotenoid- to melanin-based color in two sexually dichromatic New World orioles. Using a combination of reflectance spectrometry and chromatographic analyses of plumage pigments, we found that the chestnut plumage of adult male orchard orioles Icterus spurius is produced predominantly by phaeomelanins. Orchard oriole feathers also contain carotenoids, which appear to be masked by the high concentration of phaeomelanins. In contrast, both carotenoids and phaeomelanins appear to contribute to color in adult male Fuertes's orioles I. fuertesi . Moreover, yellow yearling male and female plumage in both species is produced by carotenoids alone. The masking of carotenoids with phaeomelanins in orchard orioles is interesting in light of the signaling roles that carotenoids are thought to play. In addition, these plumage differences produce a unique case of age and sexual pigment dimorphism in orchard and Fuertes's orioles.  相似文献   
73.
Effects of coumarin on fresh weight, dry matter, protein and nucleic acid content per cell in attached roots of maize and wheat and in whole excised elongation zones of maize were determined. The inhibition in cell length exerted by coumarin did not correspond to an inhibition of the net synthetic capacity. Coumarin treatment increased the cell surface, the production of dry matter and the protein content per cell. The dry matter and the protein content per unit surface was slightly increased or unaffected. The effect of coumann on cell shape seemed to be independent of that on dry matter production and net protein synthesis. The same was found in excised elongation zones. —The net DNA-synthesis per cell was slightly increased in attached roots by coumann treatment, but this effect was probably not correlated with the morphogenetic changes. Inhibition of DNA-synthesis with hydroxyurea did not alter the coumarin induced changes in cell shape. —The net RNA-synthesis per cell was slightly decreased after coumarin treatment, but the net RNA-synthesis per cell and the morphogenetic effects exerted by coumarin were not related with each other. Inhibition of m-RNA-synthesis with actinomycin D did not prevent the effects of coumarin on cell division, cell expansion, dry matter production and net protein synthesis. The same was true for inhibitors of protein synthesis, puromycin and p-fluorophenyl-alanine. The findings are in support of the view that coumarin affects already existing structures or enzymes. —Comparisons between coumarin and the uncouplers, DNP and dicoumarol, showed that the effects of coumarin were not, solely, due to uncoupling. SH-protecting agents, BAL, DTE and glutathione, did, with few exceptions, not reduce the morphogenetic effects of coumarin.  相似文献   
74.
Ants in the Neotropical genus Sericomyrmex Mayr cultivate fungi for food. Both ants and fungi are obligate, coevolved symbionts. The taxonomy of Sericomyrmex is problematic because the morphology of the worker caste is generally homogeneous across all of the species within the genus, species limits are vague, and the relationships between them are unknown. We used ultraconserved elements (UCEs) as genome‐scale markers to reconstruct evolutionary history and to infer species boundaries in Sericomyrmex. We recovered an average of ~990 UCE loci for 88 Sericomyrmex samples from across the geographical range of the genus as well as for five outgroup taxa. Using maximum likelihood and species‐tree approaches, we recovered nearly identical topologies across datasets with 50–95% matrix completeness. We identify nine species‐level lineages in Sericomyrmex, including two new species. This is less than the previously described 19 species, even accounting for two species for which we had no UCE samples, which brings the total number of Sericomyrmex species to 11. Divergence‐dating analyses recovered 4.3 Ma as the crown‐group age estimates for Sericomyrmex, indicating a recent, rapid radiation. We also sequenced mitochondrial cytochrome oxidase subunit I (COI) for 125 specimens. Resolution and support for clades in our COI phylogeny are weak, indicating that COI is not an appropriate species‐delimitation tool. However, taxa within species consistently cluster together, suggesting that COI is useful as a species identification (‘DNA barcoding’) tool. We also sequenced internal transcribed spacer (ITS) and large subunit (LSU) for 32 Sericomyrmex fungal cultivars. The fungal phylogeny confirms that Sericomyrmex fungi are generalized higher‐attine cultivars, interspersed with Trachymyrmex‐associated fungal species, indicating cultivar sharing and horizontal transfer between these two genera. Our results indicate that UCEs offer immense potential for delimiting and resolving relationships of problematic, recently diverged species.  相似文献   
75.
76.
77.
78.
Anterograde neuronal spread (i.e., spread from the neuron cell body toward the axon terminus) is a critical component of the alphaherpesvirus life cycle. Three viral proteins, gE, gI, and Us9, have been implicated in alphaherpesvirus anterograde spread in several animal models and neuron culture systems. We sought to better define the roles of gE, gI, and Us9 in herpes simplex virus type 1 (HSV-1) anterograde spread using a compartmentalized primary neuron culture system. We found that no anterograde spread occurred in the absence of gE or gI, indicating that these proteins are essential for HSV-1 anterograde spread. However, we did detect anterograde spread in the absence of Us9 using two independent Us9-deleted viruses. We confirmed the Us9 finding in different murine models of neuronal spread. We examined viral transport into the optic nerve and spread to the brain after retinal infection; the production of zosteriform disease after flank inoculation; and viral spread to the spinal cord after flank inoculation. In all models, anterograde spread occurred in the absence of Us9, although in some cases at reduced levels. This finding contrasts with gE- and gI-deleted viruses, which displayed no anterograde spread in any animal model. Thus, gE and gI are essential for HSV-1 anterograde spread, while Us9 is dispensable.Alphaherpesviruses are parasites of the peripheral nervous system. In their natural hosts, alphaherpesviruses establish lifelong persistent infections in sensory ganglia and periodically return by axonal transport to the periphery, where they cause recurrent disease. This life cycle requires viral transport along axons in two directions. Axonal transport in the retrograde direction (toward the neuron cell body) occurs during neuroinvasion and is required for the establishment of latency, while transport in the anterograde direction (away from the neuron cell body) occurs after reactivation and is required for viral spread to the periphery to cause recurrent disease. In addition to anterograde and retrograde axonal transport within neurons, alphaherpesviruses spread between synaptically connected neurons and between neurons and epithelial cells at the periphery (19, 22).The alphaherpesvirus subfamily includes the human pathogens herpes simplex virus type 1 (HSV-1), HSV-2, and varicella-zoster virus (VZV), as well as numerous veterinary pathogens such as pseudorabies virus (PRV) and bovine herpesviruses 1 and 5 (BHV-1 and BHV-5). The molecular mechanisms that mediate alphaherpesvirus anterograde axonal transport, anterograde spread, and cell-to-cell spread remain unclear. However, many studies of several alphaherpesviruses have indicated that anterograde transport or anterograde spread involves the viral proteins glycoprotein E (gE), glycoprotein I (gI), and Us9 (2, 5, 7, 9, 11, 13, 16, 26, 30, 31, 41, 46, 51, 52).Glycoproteins E and I are type I membrane proteins that form a heterodimer in the virion membrane and on the surface of infected cells. Although dispensable for the entry of extracellular virus, gE and gI mediate the epithelial cell-to-cell spread of numerous alphaherpesviruses (1, 3, 15, 20, 34, 38, 49, 53, 54). Us9 is a type II nonglycosylated membrane protein with no described biological activity apart from its role in neuronal transport (4, 18, 32). Here, we used several model systems to better characterize the roles of gE, gI, and Us9 in HSV-1 neuronal spread.Animal models to assess alphaherpesvirus neuronal transport (viral movement within a neuron) and spread (viral movement between cells) include the mouse flank and mouse retina models of infection. In the mouse flank model (Fig. (Fig.1A),1A), virus is scratch inoculated onto the depilated flank, where it infects the skin and spreads to innervating sensory neurons. The virus travels to the dorsal root ganglia (DRG) in the spinal cord (retrograde direction) and then returns to an entire dermatome of skin (anterograde spread). The virus also is transported in an anterograde direction from the DRG to the dorsal horn of the spinal cord and subsequently spreads to synaptically connected neurons. The production of zosteriform lesions and the presence of viral antigens in the dorsal horn of the spinal cord both are indicators of anterograde spread in this system. PRV gE and Us9 are required for the production of zosteriform disease, while gI is dispensable (7). In the absence of gE, HSV-1 also fails to cause zosteriform disease. However, unlike PRV, HSV-1 gE is required for retrograde spread to the DRG, so the role of gE in HSV-1 anterograde spread could not be evaluated in the mouse flank model (8, 36, 42).Open in a separate windowFIG. 1.Model systems to study HSV-1 neuronal spread. (A) Mouse flank model. Virus was scratch inoculated onto the skin, where it replicates, spreads to innervating neurons, and travels in a retrograde direction to the neuron cell body in the DRG. After replicating in the DRG, the virus travels in an anterograde direction back to the skin and into the dorsal horn of the spinal cord. Motor neurons also innervate the skin, allowing virus to reach the ventral horn of the spinal cord by retrograde transport. (B) Mouse retina model. Virus is injected into the vitreous body, from which it infects the retina as well as other structures of the eye, including the ciliary body, iris, and skeletal muscles of the orbit. From the retina, the virus is transported into the optic nerve and optic tract (OT) (anterograde direction) and then to the brain along visual pathways. Anterograde spread is detected in the lateral geniculate nucleus (LGN) and superior colliculus (SC). From the infected ciliary body, iris, and skeletal muscle, the virus spreads in a retrograde direction along motor and parasympathetic neurons and is detected in the oculomotor and Edinger-Westphal nuclei (OMN/EWN). Only first-order sites of spread to the brain are indicated. (Brain images were modified and reproduced from reference 47 with permission from of the publisher. Copyright Elsevier 1992.) (C) Campenot chamber system. Campenot chambers consist of a Teflon ring that divides the culture into three separate compartments. Neurons are seeded into the S chamber and extend their axons into the M and N chambers. Vero cells are seeded into the N chamber 1 day before infection. Virus is added to the S chamber and detected in the N chamber, a measure of anterograde spread.The mouse retina infection model (Fig. (Fig.1B)1B) has the advantage of allowing anterograde and retrograde spread to be studied independently of one another. Virus is delivered to the vitreous body, from which it infects the retina and other structures of the eye. The cell bodies of retinal neurons form the innermost layer of the retina; therefore, the virus infects these neurons directly, and spread from the retina along visual pathways to the brain occurs in an exclusively anterograde direction. In addition, the virus infects the anterior uveal layer of the eye (ciliary body and iris) and skeletal muscles in the orbit. From these tissues, the virus infects innervating parasympathetic and motor neurons and spreads to the brain in a retrograde direction. The localization of viral antigens in specific brain sites indicates whether the virus traveled to the brain along an anterograde or retrograde pathway (21, 25, 26, 39, 44, 51). PRV gE, gI, and Us9 each are essential for anterograde spread to the brain yet are dispensable for retrograde spread (5, 11, 25, 52). Even a strain of PRV lacking all three of these proteins retains retrograde neuronal spread activity (12, 40, 44). In contrast, in the absence of gE, HSV-1 fails to spread to the brain by either the anterograde or retrograde pathway (51).The Campenot chamber system (Fig. (Fig.1C)1C) has the advantage of allowing quantitative measurement of anterograde spread. Sympathetic neurons are cultured in a tripartite ring in which neuron cell bodies are contained in a separate compartment from their neurites. Virus is added to neuron cell bodies in one chamber, and anterograde spread to a separate chamber is measured by viral titers (13, 29, 30, 39, 43). Using this system, gEnull, gInull, and Us9null PRV each were shown to have only a partial defect in anterograde spread, while a virus lacking all three proteins was totally defective (13).We sought to quantify the anterograde spread activity of gEnull, gInull, and Us9null HSV-1 using the Campenot chamber system. While gEnull and gInull viruses were completely defective at anterograde spread, we found that a Us9null virus retained wild-type (WT) anterograde spread activity in this system. This observation was unexpected, since others previously had reported that Us9 is required for efficient HSV-1 anterograde transport or spread (26, 41, 46). Therefore, we further characterized the neuronal spread properties of two independent Us9-deleted viruses in the mouse retina and mouse flank models of infection. Our results indicate that gE and gI are essential for HSV-1 anterograde spread, whereas Us9 is dispensable.  相似文献   
79.

Background  

Methylation of lysine 79 on histone H3 by Dot1 is required for maintenance of heterochromatin structure in yeast and humans. However, this histone modification occurs predominantly in euchromatin. Thus, Dot1 affects silencing by indirect mechanisms and does not act by the recruitment model commonly proposed for histone modifications. To better understand the role of H3K79 methylation gene silencing, we investigated the silencing function of Dot1 by genetic suppressor and enhancer analysis and examined the relationship between Dot1 and other global euchromatic histone modifiers.  相似文献   
80.
The interaction between mobile DNA sequences and their hosts raises important questions in the context of hosts which reproduce clonally with only rare horizontal transmission between clones. The activity of some mobile DNAs as reversible mutators of genes raises the possibility that, in a fluctuating environment, cells may gain an advantage if they have mobile DNAs which mutate genes whose inactivation is favoured in one of the environments that the population encounters. Here we analyse a model of this process and ask what would be the optimal rate of transposition in a population whose elements are maintained by this mechanism. We also examine the impact of horizontal transfer on such a population. With movement of elements between cells, we can imagine elements with differing rates of transposition and host cells with differing rates of transposition. We find that evolution in the population of elements favours a rapid rate of transposition, and evolution of the host cells favours cells in which this rapid rate of element-dependent transposition results in an optimal rate of transposition per cell. However, when horizontal transfer rates are high, some unexpected features of the model are observed. In particular, a polymorphism between cell types (some with an optimal rate of transposition and some with no transposition at all from endogenous elements) can be stably maintained. We consider the possible biological predictions of this analysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号