首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   796篇
  免费   96篇
  国内免费   1篇
  2021年   15篇
  2020年   5篇
  2019年   4篇
  2018年   9篇
  2017年   10篇
  2016年   12篇
  2015年   21篇
  2014年   27篇
  2013年   28篇
  2012年   33篇
  2011年   38篇
  2010年   23篇
  2009年   35篇
  2008年   36篇
  2007年   32篇
  2006年   42篇
  2005年   46篇
  2004年   28篇
  2003年   41篇
  2002年   25篇
  2001年   34篇
  2000年   31篇
  1999年   33篇
  1998年   14篇
  1997年   20篇
  1996年   10篇
  1995年   7篇
  1994年   12篇
  1993年   8篇
  1992年   13篇
  1991年   18篇
  1990年   17篇
  1989年   9篇
  1988年   10篇
  1987年   12篇
  1986年   7篇
  1985年   10篇
  1984年   10篇
  1983年   4篇
  1980年   7篇
  1978年   11篇
  1977年   8篇
  1976年   8篇
  1975年   8篇
  1974年   4篇
  1973年   8篇
  1972年   5篇
  1971年   8篇
  1968年   5篇
  1967年   3篇
排序方式: 共有893条查询结果,搜索用时 15 毫秒
781.
Mutations in ANKH cause chondrocalcinosis   总被引:2,自引:0,他引:2       下载免费PDF全文
Chondrocalcinosis (CC) is a common cause of joint pain and arthritis that is caused by the deposition of calcium-containing crystals within articular cartilage. Although most cases are sporadic, rare familial forms have been linked to human chromosomes 8 (CCAL1) or 5p (CCAL2) (Baldwin et al. 1995; Hughes et al. 1995; Andrew et al. 1999). Here, we show that two previously described families with CCAL2 have mutations in the human homolog of the mouse progressive ankylosis gene (ANKH). One of the human mutations results in the substitution of a highly conserved amino acid residue within a predicted transmembrane segment. The other creates a new ATG start site that adds four additional residues to the ANKH protein. Both mutations segregate completely with disease status and are not found in control subjects. In addition, 1 of 95 U.K. patients with sporadic CC showed a deletion of a single codon in the ANKH gene. The same change was found in a sister who had bilateral knee replacement for osteoarthritis. Each of the three human mutations was reconstructed in a full-length ANK expression construct previously shown to regulate pyrophosphate levels in cultured cells in vitro. All three of the human mutations showed significantly more activity than a previously described nonsense mutation that causes severe hydroxyapatite mineral deposition and widespread joint ankylosis in mice. These results suggest that small sequence changes in ANKH are one cause of CC and joint disease in humans. Increased ANK activity may explain the different types of crystals commonly deposited in human CCAL2 families and mutant mice and may provide a useful pharmacological target for treating some forms of human CC.  相似文献   
782.
783.
This study examined the effects of aerobic conditioning during the second and third trimesters of human pregnancy on ventilatory responses to graded cycling. Previously sedentary pregnant women were assigned randomly to an exercise group (n = 14) or a nonexercising control group (n = 14). Data were collected at 15-17 weeks, 25-27 weeks and 34-36 weeks of pregnancy. Testing involved 20 W.min-1 increases in work rate to a heart rate of 170 beats.min-1 and (or) volitional fatigue. Breath-by-breath ventilatory and alveolar gas exchange measurements were compared at rest, a standard submaximal .VO2 and peak exercise. Within both groups, resting .V(E), .V(A), and V(T)/T(I) increased significantly with advancing gestation. Peak work rate, O2 pulse (.VO2/HR), .V(E), .V(A) respiratory rate, V(T)/T(I), .VO2, .VCO2, and the ventilatory threshold (T(vent)) were increased after physical conditioning. Chronic maternal exercise has no significant effect on pregnancy-induced changes in ventilation and (or) alveolar gas exchange at rest or during standard submaximal exercise. Training-induced increases in T(vent) and peak oxygen pulse support the efficacy of prenatal fitness programs to improve maternal work capacity.  相似文献   
784.
Bipolar, schizophrenia, and schizoaffective disorders are common, highly heritable psychiatric disorders, for which familial coaggregation, as well as epidemiological and genetic evidence, suggests overlapping etiologies. No definitive susceptibility genes have yet been identified for any of these disorders. Genetic heterogeneity, combined with phenotypic imprecision and poor marker coverage, has contributed to the difficulty in defining risk variants. We focused on families of Ashkenazi Jewish descent, to reduce genetic heterogeneity, and, as a precursor to genomewide association studies, we undertook a single-nucleotide polymorphism (SNP) genotyping screen of 64 candidate genes (440 SNPs) chosen on the basis of previous linkage or of association and/or biological relevance. We genotyped an average of 6.9 SNPs per gene, with an average density of 1 SNP per 11.9 kb in 323 bipolar I disorder and 274 schizophrenia or schizoaffective Ashkenazi case-parent trios. Using single-SNP and haplotype-based transmission/disequilibrium tests, we ranked genes on the basis of strength of association (P<.01). Six genes (DAO, GRM3, GRM4, GRIN2B, IL2RB, and TUBA8) met this criterion for bipolar I disorder; only DAO has been previously associated with bipolar disorder. Six genes (RGS4, SCA1, GRM4, DPYSL2, NOS1, and GRID1) met this criterion for schizophrenia or schizoaffective disorder; five replicate previous associations, and one, GRID1, shows a novel association with schizophrenia. In addition, six genes (DPYSL2, DTNBP1, G30/G72, GRID1, GRM4, and NOS1) showed overlapping suggestive evidence of association in both disorders. These results may help to prioritize candidate genes for future study from among the many suspected/proposed for schizophrenia and bipolar disorders. They provide further support for shared genetic susceptibility between these two disorders that involve glutamate-signaling pathways.  相似文献   
785.
The relatively short history of linkage studies in bipolar disorders (BPs) has produced inconsistent findings. Implicated regions have been large, with reduced levels of significance and modest effect sizes. Both phenotypic and genetic heterogeneity may have contributed to the failure to define risk loci. BP is part of a spectrum of apparently familial affective disorders, which have been organized by severity. Heterogeneity may arise because of insufficient data to define the spectrum boundaries, and, in general, the less-severe disorders are more difficult to diagnose reliably. To address the inherent complexities in detecting BP susceptibility loci, we have used restricted diagnostic classifications and a genetically more homogeneous (Ashkenazi Jewish) family collection to perform a 9-cM autosomal genomewide linkage scan. Although they are genetically more homogeneous, there are no data to suggest that the rate of illness in the Ashkenazim differs from that in other populations. In a genome scan of 41 Ashkenazi pedigrees with a proband affected with bipolar I disorder (BPI) and at least one other member affected with BPI or bipolar II disorder (BPII), we identified four regions suggestive of linkage on chromosomes 1, 3, 11, and 18. Follow-up genotyping showed that the regions on chromosomes 1, 3, and 18 are also suggestive of linkage in a subset of pedigrees limited to relative pairs affected with BPI. Furthermore, our chromosome 18q22 signal (D18S541 and D18S477) overlaps with previous BP findings. This research is being conducted in parallel with our companion study of schizophrenia, in which, by use of an identical approach, we recently reported significant evidence for a schizophrenia susceptibility locus in the Ashkenazim on chromosome 10q22.  相似文献   
786.
Pathogenic bacteria modify the lipid A portion of their lipopolysaccharide to help evade the host innate immune response. Modification of the negatively charged phosphate groups of lipid A aids in resistance to cationic antimicrobial peptides targeting the bacterial cell surface. The lipid A of Helicobacter pylori contains a phosphoethanolamine (pEtN) unit directly linked to the 1-position of the disaccharide backbone. This is in contrast to the pEtN units found in other pathogenic Gram-negative bacteria, which are attached to the lipid A phosphate group to form a pyrophosphate linkage. This study describes two enzymes involved in the periplasmic modification of the 1-phosphate group of H. pylori lipid A. By using an in vitro assay system, we demonstrate the presence of lipid A 1-phosphatase activity in membranes of H. pylori. In an attempt to identify genes encoding possible lipid A phosphatases, we cloned four putative orthologs of Escherichia coli pgpB, the phosphatidylglycerol-phosphate phosphatase, from H. pylori 26695. One of these orthologs, Hp0021, is the structural gene for the lipid A 1-phosphatase and is required for removal of the 1-phosphate group from mature lipid A in an in vitro assay system. Heterologous expression of Hp0021 in E. coli resulted in the highly selective removal of the 1-phosphate group from E. coli lipid A, as demonstrated by mass spectrometry. We also identified the structural gene for the H. pylori lipid A pEtN transferase (Hp0022). Mass spectrometric analysis of the lipid A isolated from E. coli expressing Hp0021 and Hp0022 shows the addition of a single pEtN group at the 1-position, confirming that Hp0022 is responsible for the addition of a pEtN unit at the 1-position in H. pylori lipid A. In summary, we demonstrate that modification of the 1-phosphate group of H. pylori lipid A requires two enzymatic steps.  相似文献   
787.
788.
789.
790.
There is growing evidence that 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) is active in the brain but until recently there was a lack of evidence about its role during brain development. Guided by certain features of the epidemiology of schizophrenia, our group has explored the role of 1,25(OH)(2)D(3) in brain development using whole animal models and in vitro culture studies. The expression of the vitamin D receptor (VDR) in the embryonic rat brain rises steadily between embryonic day 15-23, and 1,25(OH)(2)D(3) induces the expression of nerve growth factor and stimulates neurite outgrowth in embryonic hippocampal explant cultures. In the neonatal rat, low prenatal vitamin D(3) in utero leads to increased brain size, altered brain shape, enlarged ventricles, reduced expression of nerve growth factors, reduced expression of the low affinity p75 receptor and increased cellular proliferation. In summary, there is growing evidence that low prenatal levels of 1,25(OH)(2)D(3) can influence critical components of orderly brain development. It remains to be seen if these processes are of clinical relevance in humans, but in light of the high rates of hypovitaminosis D in pregnant women and neonates, this area warrants further scrutiny.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号