首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   595篇
  免费   57篇
  652篇
  2022年   6篇
  2021年   6篇
  2020年   7篇
  2019年   9篇
  2018年   11篇
  2017年   10篇
  2016年   13篇
  2015年   18篇
  2014年   21篇
  2013年   28篇
  2012年   29篇
  2011年   34篇
  2010年   15篇
  2009年   15篇
  2008年   21篇
  2007年   17篇
  2006年   22篇
  2005年   10篇
  2004年   15篇
  2003年   12篇
  2002年   12篇
  2001年   24篇
  2000年   12篇
  1999年   14篇
  1998年   8篇
  1997年   5篇
  1996年   8篇
  1995年   8篇
  1994年   6篇
  1993年   9篇
  1992年   15篇
  1991年   21篇
  1990年   17篇
  1989年   14篇
  1988年   11篇
  1987年   21篇
  1986年   11篇
  1985年   15篇
  1984年   5篇
  1982年   5篇
  1981年   7篇
  1980年   8篇
  1979年   7篇
  1974年   4篇
  1973年   6篇
  1972年   5篇
  1971年   5篇
  1968年   4篇
  1967年   13篇
  1966年   4篇
排序方式: 共有652条查询结果,搜索用时 15 毫秒
51.
Some eukaryotes, including bdelloid rotifer species, are able to withstand desiccation by entering a state of suspended animation. In this ametabolic condition, known as anhydrobiosis, they can remain viable for extended periods, perhaps decades, but resume normal activities on rehydration. Anhydrobiosis is thought to require accumulation of the non-reducing disaccharides trehalose (in animals and fungi) or sucrose (in plant seeds and resurrection plants), which may protect proteins and membranes by acting as water replacement molecules and vitrifying agents. However, in clone cultures of bdelloid rotifers Philodina roseola and Adineta vaga, we were unable to detect trehalose or other disaccharides in either control or dehydrating animals, as determined by gas chromatography. Indeed, trehalose synthase genes (tps) were not detected in these rotifer genomes, suggesting that bdelloids might not have the capacity to produce trehalose under any circumstances. This is in sharp contrast to other anhydrobiotic animals such as nematodes and brine shrimp cysts, where trehalose is present during desiccation. Instead, we suggest that adaptations involving proteins might be more important than those involving small biochemicals in rotifer anhydrobiosis: on dehydration, P. roseola upregulates a hydrophilic protein related to the late embryogenesis abundant (LEA) proteins associated with desiccation tolerance in plants. Since LEA-like proteins have also been implicated in the desiccation tolerance of nematodes and micro-organisms, it seems that hydrophilic protein biosynthesis represents a common element of anhydrobiosis across several biological kingdoms.  相似文献   
52.
It was previously demonstrated that the tumour-targeting antibody mAb H10 can be transiently expressed and purified at high levels in Nicotiana benthamiana by using a vacuum-agroinfiltration system boosted by the use of a virus silencing suppressor protein. Scope of this work was to analyse different steps of protein extraction from agroinfiltrated leaves to optimise the purification process of the secretory mAb H10 providing new insights in the field of large-scale plant production. Two different extraction procedures (mechanical shearing/homogenisation and recovery of intercellular fluids -IFs-) were evaluated and compared in terms of purified antibody yields, antibody degradation and total phenolic compounds content. Mechanical grinding from fresh leaf tissues gave the highest purification yield (75 mg/kg Fresh Weight -75% intact tetrameric IgG-) and total phenolics concentration in the range of 420 μg/g FW. The second extraction procedure, based on the recovery of IFs, gave purification yields of 15–20 mg/kg FW (corresponding to 27% of total soluble protein) in which about 40% of purified protein is constituted by fully assembled IgG with a total phenolic compounds content reduced by one order of magnitude (21 μg/g FW). Despite a higher antibody degradation, purification from intercellular fluids demonstrated to be very promising since extraction procedures resulted extremely fast and amenable to scaling-up. Overall data highlight that different extraction procedures can dramatically affect the proteolytic degradation and quality of antibody purified from agroinfiltrated N. benthamiana leaves. Based on these results, we optimised a pilot-scale purification protocol using a two-step purification procedure from batches of fresh agroinfiltrated leaves (250 g) allowing purification of milligram quantities (average yield 40 mg/kg FW) of fully assembled and functional IgG with a 99.4% purity, free of phenolic and alkaloid compounds with low endotoxin levels (<1 EU/ml).  相似文献   
53.
Australia has the highest incidence of skin cancer in the world and ultraviolet (UV)-B radiation has been implicated as its major aetiological agent. Despite the link between melanoma and exposure to UV-B radiation in childhood, little work has been carried out to determine the effects of UV-B on neonatal skin. In this study, we investigated the response of adult and neonatal Langerhans cells (LC) to UV-B radiation to determine whether exposure in the neonatal period impairs the development of the skin immune system, thus having implications for the immune response later in life. Neonatal and adult mice were irradiated with a single dose of UV-B radiation and epidermal sheets prepared to determine the number of LC present. In addition, antigen carriage and T-cell proliferation assays were carried out to assess the immune response when the mice reached maturity. Results showed that neonatal LC were more susceptible than adult LC to depletion at 2 kJ/m(2) UV-B exposure; however, there was similar susceptibility at lower doses. When mice that were irradiated as neonates were analysed at maturity, there was an increased ability to respond to cutaneously applied antigen as more antigen was transported to the lymph node and the lymph node dendritic cells had an enhanced ability to stimulate T-cell proliferation. In addition, this response was skewed towards a Th2 type response. Thus, single high-dose UV-B exposure alters the development of neonatal LC, resulting in a short-term reduction in the number of LC but an enhanced immune response when assessed at maturity.  相似文献   
54.
Fifty-six species in the Trichocomaceae were recovered from bark of trees and shrubs from hot arid and temperate regions, and following one fire in a temperate region of Australia. Fungi were recovered from dry bark after incubation for up to 1 h at up to 105 degrees C. Fourteen species also regenerated on agar after their conidia were heated for 1 h at 105 degrees C. Anamorphic species were commonly recovered and widespread. Teleomorphic species were only recovered after heating the bark. In addition, anamorphic fungi were recovered from one plant species following a natural fire. The results support the view that both anamorphic and teleomorphic fungi may tolerate extreme temperatures in their environment while dry.  相似文献   
55.
56.
57.
There is much interest in the use of mesenchymal stem cells/marrow stromal cells (MSC) to treat neurodegenerative disorders, in particular those that are fatal and difficult to treat, such as Huntington's disease. MSC present a promising tool for cell therapy and are currently being tested in FDA-approved phase I-III clinical trials for many disorders. In preclinical studies of neurodegenerative disorders, MSC have demonstrated efficacy, when used as delivery vehicles for neural growth factors. A number of investigators have examined the potential benefits of innate MSC-secreted trophic support and augmented growth factors to support injured neurons. These include overexpression of brain-derived neurotrophic factor and glial-derived neurotrophic factor, using genetically engineered MSC as a vehicle to deliver the cytokines directly into the microenvironment. Proposed regenerative approaches to neurological diseases using MSC include cell therapies in which cells are delivered via intracerebral or intrathecal injection. Upon transplantation, MSC in the brain promote endogenous neuronal growth, encourage synaptic connection from damaged neurons, decrease apoptosis, reduce levels of free radicals, and regulate inflammation. These abilities are primarily modulated through paracrine actions. Clinical trials for MSC injection into the central nervous system to treat amyotrophic lateral sclerosis, traumatic brain injury, and stroke are currently ongoing. The current data in support of applying MSC-based cellular therapies to the treatment of Huntington's disease is discussed.  相似文献   
58.
HIV gene therapy has the potential to offer an alternative to the use of current small-molecule antiretroviral drugs as a treatment strategy for HIV-infected individuals. Therapies designed to administer HIV-resistant stem cells to an infected patient may also provide a functional cure, as observed in a bone marrow transplant performed with hematopoietic stem cells (HSCs) homozygous for the CCR5-Δ32-bp allele. In our current studies, preclinical evaluation of a combination anti-HIV lentiviral vector was performed, in vivo, in humanized NOD-RAG1(-/-) IL2rγ(-/-) knockout mice. This combination vector, which displays strong preintegration inhibition of HIV-1 infection in vitro, contains a human/rhesus macaque TRIM5α isoform, a CCR5 short hairpin RNA (shRNA), and a TAR decoy. Multilineage hematopoiesis from anti-HIV lentiviral vector-transduced human CD34(+) HSCs was observed in the peripheral blood and in various lymphoid organs, including the thymus, spleen, and bone marrow, of engrafted mice. Anti-HIV vector-transduced CD34(+) cells displayed normal development of immune cells, including T cells, B cells, and macrophages. The anti-HIV vector-transduced cells also displayed knockdown of cell surface CCR5 due to the expression of the CCR5 shRNA. After in vivo challenge with either an R5-tropic BaL-1 or X4-tropic NL4-3 strain of HIV-1, maintenance of human CD4(+) cell levels and a selective survival advantage of anti-HIV gene-modified cells were observed in engrafted mice. The data provided from our study confirm the safety and efficacy of this combination anti-HIV lentiviral vector in a hematopoietic stem cell gene therapy setting for HIV and validates its potential application in future clinical trials.  相似文献   
59.
60.
CypD (cyclophilin D) has been established as a critical regulator of the MPT (mitochondrial permeability transition) pore, and pharmacological or genetic inhibition of CypD attenuates MPT in numerous systems. However, it has recently been suggested that the inhibitory effects of CypD inhibition only manifest when P(i) (inorganic phosphate) is present, and that inhibition is lost when P(i) is replaced by As(i) (inorganic arsenate) or V(i) (inorganic vanadate). To test this, liver mitochondria were isolated from wild-type and CypD-deficient (Ppif-/-) mice and then incubated in buffer containing P(i), As(i) or V(i). MPT was induced under both energized and de-energized conditions by the addition of Ca2+, and the resultant mitochondrial swelling was measured spectrophotometrically. For pharmacological inhibition of CypD, wild-type mitochondria were pre-incubated with CsA (cyclosporin A) before the addition of Ca2+. In energized and de-energized mitochondria, Ca2+ induced MPT regardless of the anion present, although the magnitude differed between P(i), As(i) and V(i). However, in all cases, pre-treatment with CsA significantly inhibited MPT. Moreover, these effects were independent of mouse strain, organ type and rodent species. Similarly, attenuation of Ca2+-induced MPT in the Ppif-/- mitochondria was still observed irrespective of whether P(i), As(i) or V(i) was present. We conclude that the pharmacological and genetic inhibition of CypD is still able to attenuate MPT even in the absence of P(i).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号