全文获取类型
收费全文 | 5486篇 |
免费 | 630篇 |
专业分类
6116篇 |
出版年
2022年 | 43篇 |
2021年 | 81篇 |
2020年 | 52篇 |
2019年 | 54篇 |
2018年 | 65篇 |
2017年 | 71篇 |
2016年 | 122篇 |
2015年 | 179篇 |
2014年 | 192篇 |
2013年 | 281篇 |
2012年 | 286篇 |
2011年 | 336篇 |
2010年 | 217篇 |
2009年 | 179篇 |
2008年 | 251篇 |
2007年 | 239篇 |
2006年 | 231篇 |
2005年 | 219篇 |
2004年 | 210篇 |
2003年 | 192篇 |
2002年 | 208篇 |
2001年 | 129篇 |
2000年 | 114篇 |
1999年 | 126篇 |
1998年 | 64篇 |
1997年 | 63篇 |
1996年 | 74篇 |
1995年 | 63篇 |
1994年 | 70篇 |
1993年 | 70篇 |
1992年 | 75篇 |
1991年 | 65篇 |
1990年 | 81篇 |
1989年 | 96篇 |
1988年 | 75篇 |
1987年 | 59篇 |
1986年 | 62篇 |
1985年 | 57篇 |
1984年 | 56篇 |
1983年 | 50篇 |
1982年 | 62篇 |
1981年 | 43篇 |
1980年 | 41篇 |
1979年 | 59篇 |
1978年 | 43篇 |
1977年 | 47篇 |
1976年 | 56篇 |
1975年 | 38篇 |
1974年 | 63篇 |
1973年 | 47篇 |
排序方式: 共有6116条查询结果,搜索用时 15 毫秒
101.
102.
Beyond finding individual genes that are involved in medical disorders, an important challenge is the integration of sets of disease genes with the complexities of basic biological processes. We examine this issue by focusing on neuronal multiprotein complexes and their components encoded on the human X chromosome. Multiprotein signaling complexes in the postsynaptic terminal of central nervous system synapses are essential for the induction of neuronal plasticity and cognitive processes in animals. The prototype complex is the N-methyl-D-aspartate receptor complex/membrane-associated guanylate kinase-associated signaling complex (NRC/MASC) comprising 185 proteins and embedded within the postsynaptic density (PSD), which is a set of complexes totaling approximately 1,100 proteins. It is striking that 86% (6 of 7) of X-linked NRC/MASC genes and 49% (19 of 39) of X-chromosomal PSD genes are already known to be involved in human psychiatric disorders. Moreover, of the 69 known proteins mutated in X-linked mental retardation, 19 (28%) encode postsynaptic proteins. The high incidence of involvement in cognitive disorders is also found in mouse mutants and indicates that the complexes are functioning as integrated entities or molecular machines and that disruption of different components impairs their overall role in cognitive processes. We also noticed that NRC/MASC genes appear to be more strongly associated with mental retardation and autism spectrum disorders. We propose that systematic studies of PSD and NRC/MASC genes in mice and humans will give a high yield of novel genes important for human disease and new mechanistic insights into higher cognitive functions. 相似文献
103.
The kinase inhibitor sorafenib induces cell death through a process involving induction of endoplasmic reticulum stress 总被引:1,自引:0,他引:1
Rahmani M Davis EM Crabtree TR Habibi JR Nguyen TK Dent P Grant S 《Molecular and cellular biology》2007,27(15):5499-5513
Sorafenib is a multikinase inhibitor that induces apoptosis in human leukemia and other malignant cells. Recently, we demonstrated that sorafenib diminishes Mcl-1 protein expression by inhibiting translation through a MEK1/2-ERK1/2 signaling-independent mechanism and that this phenomenon plays a key functional role in sorafenib-mediated lethality. Here, we report that inducible expression of constitutively active MEK1 fails to protect cells from sorafenib-mediated lethality, indicating that sorafenib-induced cell death is unrelated to MEK1/2-ERK1/2 pathway inactivation. Notably, treatment with sorafenib induced endoplasmic reticulum (ER) stress in human leukemia cells (U937) manifested by immediate cytosolic-calcium mobilization, GADD153 and GADD34 protein induction, PKR-like ER kinase (PERK) and eukaryotic initiation factor 2alpha (eIF2alpha) phosphorylation, XBP1 splicing, and a general reduction in protein synthesis as assessed by [35S]methionine incorporation. These events were accompanied by pronounced generation of reactive oxygen species through a mechanism dependent upon cytosolic-calcium mobilization and a significant decline in GRP78/Bip protein levels. Interestingly, enforced expression of IRE1alpha markedly reduced sorafenib-mediated apoptosis, whereas knockdown of IRE1alpha or XBP1, disruption of PERK activity, or inhibition of eIF2alpha phosphorylation enhanced sorafenib-mediated lethality. Finally, downregulation of caspase-2 or caspase-4 by small interfering RNA significantly diminished apoptosis induced by sorafenib. Together, these findings demonstrate that ER stress represents a central component of a MEK1/2-ERK1/2-independent cell death program triggered by sorafenib. 相似文献
104.
Transposable elements (TEs) can affect the structure of genomes through their acquisition and transposition of novel DNA sequences. The 134-bp repetitive elements, Lep1, are conserved non-autonomous Helitrons in lepidopteran genomes that have characteristic 5'-CT and 3'-CTAY nucleotide termini, a 3'-terminal hairpin structure, a 5'- and 3'-subterminal inverted repeat (SIR), and integrations that occur between AT or TT nucleotides. Lep1 Helitrons have acquired and propagated sequences downstream of their 3'-CTAY termini that are 57-344-bp in length and have termini composed of a 3'-CTRR preceded by a 3'-hairpin structure and a region complementary to the 5'-SIR (3'-SIRb). Features of both the Lep1 Helitron and multiple acquired sequences indicate that secondary structures at the 3'-terminus may have a role in rolling circle replication or genome integration mechanisms, and are a prerequisite for novel end creation by Helitron-like TEs. The preferential integration of Lep1 Helitrons in proximity to gene-coding regions results in the creation of genetic novelty that is shown to impact gene structure and function through the introduction of novel exon sequence (exon shuffling). These findings are important in understanding the structural requirements of genomic DNA sequences that are acquired and transposed by Helitron-like TEs. 相似文献
105.
A question that is central to understanding the mechanisms of aging and cellular deterioration is whether enzymes involved in recognition and metabolism of spontaneously damaged proteins are themselves damaged, either becoming substrates for their own activity; or being unable to act upon themselves, initiating cascades of cellular damage. We show here byin vitro experiments that protein (d-aspartyl/l-isoaspartyl) carboxyl methyltransferase (PCM) from bovine erythrocytes does methylate age-dependent amino acid damage in its own sequence. The subpopulation that is methylated, termed thePCM fraction, appears to be formed through age-dependent deamidation of an asparaginyl site to either anl-isoaspartyl ord-aspartyl site because (a) the stoichiometry of automethylation of purified PCM is less than 1%, a value typical of the substoichiometric methylation of many other aged protein substrates, (b)PCM is slightly more acidic than the bulk of PCM, and (c) the methyl esterified site inPCM has the characteristic base-lability of this type of methyl ester. Also, the methyl group is not incorporated into the enzyme as an active site intermediate because the incorporated methyl group is not chased onto substrate protein. The effect of enzyme dilution on the rate of the automethylation reaction is consistent with methylation occurring between protein molecules, showing that the pool of PCM is autocatalytic even though individual molecules may not be. The automethylation and possible self-repair of the PCM pool has implications for maintaining thein vivo efficiency of methylation-dependent protein repair. 相似文献
106.
Vikman Kristina Robertson Brita Grant Gunnar Liljeborg Anders Kristensson Krister 《Brain Cell Biology》1998,27(10):749-760
Summary Interferon-γ can facilitate the spinal nociceptive flexor reflex and elicit neuropathic pain-related behavior in rats and mice. Immunoreactivity for the interferon-γ receptor (IFN-γR) occurs in the superficial layers of the dorsal horn and the lateral spinal nucleus in the rat and mouse spinal cord, as well as in subsets of neurons in the dorsal root ganglia. The aim of the present study was to examine the cellular localization and origin of the IFN-γR in the spinal cord. As viewed by confocal microscopy, the immunopositivity for the IFN-γR was co-localized with that of the presynaptic marker synaptophysin and with neuronal nitric oxide synthase in the lateral spinal nucleus, whereas only a minor overlap with these molecules was observed in laminae I and II of the dorsal horn. There was no co-localization of the IFN-γR with markers for astrocytes and microglial cells. Ultrastructurally, the IFN-γR was found predominantly in axon terminals in the lateral spinal nucleus but also at postsynaptic sites in dendrites in laminae I and II. The IFN-γR expressed in neurons in dorsal root ganglia was transported in axons both centrally and peripherally. Hemisection of the spinal cord caused no reduction in immunolabelling of the IFN-γR in the dorsal horn or the lateral spinal nucleus. Since rhizotomy does not effect the immunolabelling in the lateral spinal nucleus, our observation indicates that the presynaptic receptors in this nucleus are derived from intrinsic neurons. The localization of the IFN-γR in the spinal cord differed from that of the AMPA glutamate receptor subunits 2 and 3 and the substance P receptor (NK1). Our results, showing localization of IFN-γR to pre- and postsynaptic sites in the dorsal horn and lateral spinal nucleus indicate that IFN-γ can modulate nociception at the spinal cord level. 相似文献
107.
108.
Enzyme-linked immunosorbent analysis for aflatoxin B1. 总被引:1,自引:0,他引:1
An enzyme-linked immunosorbent analysis (ELISA) permitted the detection of less than 10 pg of aflatoxin B1 per ml. The antitoxin was most specific for aflatoxins B1 and B2alpha, and least specific for aflatoxin G1. 相似文献
109.
S. S. Sandhu F. J. de Serres H. N. B. Gopalan W. F. Grant D. Svendsgaard J. Velemínský G. C. Becking 《Mutation research》1994,310(2):257-263
In the first phase of a collaborative study by the International Programme on Chemical Safety (PRCS), four coded chemicals, i.e. azidoglycerol (AG, 3-azido-1,2-propanediol), methyl nitrosurea (MNU), sodium azide (NaN3) and maleic hydrazide (MH), and ethyl methanesulfonate (EMS) as a positive control were tested in four plant bioassays, namely the Arabidopsis embryo and chlorophyll mutation assay, the Tradescantia stamen hair assay (Trad-SH assay), the Tradescantia micronucleus assay (Trade-MCN), and the Vicia faba root tip assay. Seventeen laboratories from diverse regions of the world participated with four to six laboratories each using one plant assay. For the Arabidopsis assay, laboratories were in agreement with MNU and AG giving positive responses and NaN3 giving a negative response. With the exception of one laboratory which reported MH as weakly mutagenic, no mutagenic response was reported for MH by the other laboratories. For the Vicia faba assay, all laboratories reported a positive response for MNU, AG, and MH, whereas two of the six laboratories reported a negative response for NaN3. For the Trad-SH assay, MH was reported as giving a positive response and a positive response was also observed for MNU with the exception of one laboratory. NaN3, which exhibited a relatively high degree of toxicity, elicited a positive response in three of the five laboratories. AG was found positive in only one of the two laboratories which tested this chemical. For the Trad-MCN assay, MNU and MH were reported as positive by all laboratories, while four out of five laboratories reported NaN3 to be positive. Only one of three laboratories reported AG to be positive. The major sources of variability were identified and considered to be in the same range as found in similar studies on other test systems. Recommendations were made for minor changes in methodology and for initiating the second phase of this study. 相似文献
110.