全文获取类型
收费全文 | 144篇 |
免费 | 17篇 |
专业分类
161篇 |
出版年
2022年 | 1篇 |
2021年 | 2篇 |
2020年 | 1篇 |
2017年 | 1篇 |
2015年 | 4篇 |
2014年 | 4篇 |
2013年 | 9篇 |
2012年 | 8篇 |
2011年 | 9篇 |
2010年 | 7篇 |
2009年 | 5篇 |
2008年 | 8篇 |
2007年 | 11篇 |
2006年 | 10篇 |
2005年 | 5篇 |
2004年 | 6篇 |
2003年 | 3篇 |
2002年 | 2篇 |
2001年 | 1篇 |
2000年 | 2篇 |
1999年 | 4篇 |
1998年 | 7篇 |
1997年 | 2篇 |
1996年 | 3篇 |
1995年 | 3篇 |
1994年 | 2篇 |
1993年 | 4篇 |
1992年 | 3篇 |
1991年 | 1篇 |
1989年 | 3篇 |
1988年 | 5篇 |
1987年 | 3篇 |
1986年 | 1篇 |
1985年 | 3篇 |
1984年 | 1篇 |
1983年 | 2篇 |
1982年 | 1篇 |
1981年 | 2篇 |
1979年 | 1篇 |
1978年 | 1篇 |
1977年 | 3篇 |
1974年 | 4篇 |
1973年 | 1篇 |
1969年 | 2篇 |
排序方式: 共有161条查询结果,搜索用时 10 毫秒
81.
The repair of dermal tissue is a complex process of interconnected phenomena, where cellular, chemical and mechanical aspects all play a role, both in an autocrine and in a paracrine fashion. Recent experimental results have shown that transforming growth factor -β (TGFβ) and tissue mechanics play roles in regulating cell proliferation, differentiation and the production of extracellular materials. We have developed a 1D mathematical model that considers the interaction between the cellular, chemical and mechanical phenomena, allowing the combination of TGFβ and tissue stress to inform the activation of fibroblasts to myofibroblasts. Additionally, our model incorporates the observed feature of residual stress by considering the changing zero-stress state in the formulation for effective strain. Using this model, we predict that the continued presence of TGFβ in dermal wounds will produce contractures due to the persistence of myofibroblasts; in contrast, early elimination of TGFβ significantly reduces the myofibroblast numbers resulting in an increase in wound size. Similar results were obtained by varying the rate at which fibroblasts differentiate to myofibroblasts and by changing the myofibroblast apoptotic rate. Taken together, the implication is that elevated levels of myofibroblasts is the key factor behind wounds healing with excessive contraction, suggesting that clinical strategies which aim to reduce the myofibroblast density may reduce the appearance of contractures. 相似文献
82.
Plant stomata display a wide range of short-term behavioural and long-term morphological responses to atmospheric carbon dioxide concentration ([CO2]). The diversity of responses suggests that plants may have different strategies for controlling gas exchange, yet it is not known whether these strategies are co-ordinated in some way. Here, we test the hypothesis that there is co-ordination of physiological (via aperture change) and morphological (via stomatal density change) control of gas exchange by plants. We examined the response of stomatal conductance (G s) to instantaneous changes in external [CO2] (C a) in an evolutionary cross-section of vascular plants grown in atmospheres of elevated [CO2] (1,500 ppm) and sub-ambient [O2] (13.0 %) compared to control conditions (380 ppm CO2, 20.9 % O2). We found that active control of stomatal aperture to [CO2] above current ambient levels was not restricted to angiosperms, occurring in the gymnosperms Lepidozamia peroffskyana and Nageia nagi. The angiosperm species analysed appeared to possess a greater respiratory demand for stomatal movement than gymnosperm species displaying active stomatal control. Those species with little or no control of stomatal aperture (termed passive) to C a were more likely to exhibit a reduction in stomatal density than species with active stomatal control when grown in atmospheres of elevated [CO2]. The relationship between the degree of stomatal aperture control to C a above ambient and the extent of any reduction in stomatal density may suggest the co-ordination of physiological and morphological responses of stomata to [CO2] in the optimisation of water use efficiency. This trade-off between stomatal control strategies may have developed due to selective pressures exerted by the costs associated with passive and active stomatal control. 相似文献
83.
84.
Shakti N. Menon Cameron L. Hall Scott W. McCue D. L. Sean McElwain 《Biomechanics and modeling in mechanobiology》2017,16(5):1743-1763
The mechanical behaviour of solid biological tissues has long been described using models based on classical continuum mechanics. However, the classical continuum theories of elasticity and viscoelasticity cannot easily capture the continual remodelling and associated structural changes in biological tissues. Furthermore, models drawn from plasticity theory are difficult to apply and interpret in this context, where there is no equivalent of a yield stress or flow rule. In this work, we describe a novel one-dimensional mathematical model of tissue remodelling based on the multiplicative decomposition of the deformation gradient. We express the mechanical effects of remodelling as an evolution equation for the effective strain, a measure of the difference between the current state and a hypothetical mechanically relaxed state of the tissue. This morphoelastic model combines the simplicity and interpretability of classical viscoelastic models with the versatility of plasticity theory. A novel feature of our model is that while most models describe growth as a continuous quantity, here we begin with discrete cells and develop a continuum representation of lattice remodelling based on an appropriate limit of the behaviour of discrete cells. To demonstrate the utility of our approach, we use this framework to capture qualitative aspects of the continual remodelling observed in fibroblast-populated collagen lattices, in particular its contraction and its subsequent sudden re-expansion when remodelling is interrupted. 相似文献
85.
Antibodies define multiple proteins with epitopes exposed on the surface of live Babesia bigemina merozoites 总被引:16,自引:0,他引:16
T F McElwain L E Perryman W C Davis T C McGuire 《Journal of immunology (Baltimore, Md. : 1950)》1987,138(7):2298-2304
Babesia bigemina is one of several tick-borne hemoparasitic diseases of cattle that are inadequately controlled and cause substantial livestock production losses in tropical and subtropical climates. Recovery from acute babesiosis is associated with development of protective immunity against subsequent challenge with both homologous and heterologous parasites. Viable and infectious merozoites, the intraerythrocytic stage of B. bigemina responsible for clinical disease, were separated from contaminating host cells by density gradient centrifugation. Monoclonal antibodies developed against gradient-separated merozoites were screened for surface reactivity against live merozoites in an immunofluorescent binding assay. Surface-reactive antibodies immunoprecipitated five major biosynthetically radiolabeled merozoite proteins with relative m.w. of 72,000, 58,000, 55,000, 45,000, and 36,000 in SDS-PAGE. Two additional proteins immunoprecipitated with the 45,000 m.w. protein were unreactive with monoclonal antibody in western blots and are apparently part of a membrane complex co-precipitated by this antibody. In contrast, additional proteins of m.w. of 36,000, 35,000, and 33,000, immunoprecipitated with the 58,000 protein, all contain the surface-exposed epitope bound by monoclonal antibody. Immune serum from an animal that had recovered from infection with a Mexico isolate of B. bigemina immunoprecipitated five radiolabeled proteins from the Mexico isolate that co-migrated in SDS-PAGE with major proteins precipitated by surface-reactive monoclonal antibodies. In addition, antibodies against a Kenya isolate of B. bigemina immunoprecipitated the same co-migrating proteins from radio-labeled Mexico isolate, demonstrating epitope conservation between surface proteins of geographically different isolates. The identification of proteins with epitopes exposed on the surface of live merozoites and accessible to antibody provides candidates to be tested as protective immunogens in cattle. 相似文献
86.
Le AV Cho JY Miller M McElwain S Golgotiu K Broide DH 《Journal of immunology (Baltimore, Md. : 1950)》2007,178(11):7310-7316
Intracellular signaling pathways that converge on Smad 3 are used by both TGF-beta and activin A, key cytokines implicated in the process of fibrogenesis. To determine the role of Smad 3 in allergen-induced airway remodeling, Smad 3-deficient and wild-type (WT) mice were sensitized to OVA and challenged by repetitive administration of OVA for 1 mo. Increased levels of activin A and increased numbers of peribronchial TGF-beta1(+) cells were detected in WT and Smad 3-deficient mice following repetitive OVA challenge. Smad 3-deficient mice challenged with OVA had significantly less peribronchial fibrosis (total lung collagen content and trichrome staining), reduced thickness of the peribronchial smooth muscle layer, and reduced epithelial mucus production compared with WT mice. As TGF-beta and Smad 3 signaling are hypothesized to mediate differentiation of fibroblasts to myofibroblasts in vivo, we determined the number of peribronchial myofibroblasts (Col-1(+) and alpha-smooth muscle actin(+)) as assessed by double-label immunofluorescence microscopy. Although the number of peribronchial myofibroblasts increased significantly in WT mice following OVA challenge, there was a significant reduction in the number of peribronchial myofibroblasts in OVA-challenged Smad 3-deficient mice. There was no difference in levels of eosinophilic airway inflammation or airway responsiveness in Smad 3-deficient compared with WT mice. These results suggest that Smad 3 signaling is required for allergen-induced airway remodeling, as well as allergen-induced accumulation of myofibroblasts in the airway. However, Smad 3 signaling does not contribute significantly to airway responsiveness. 相似文献
87.
88.
Humoral immunity is that aspect of specific immunity that is mediated by B lymphocytes and involves the neutralizing of pathogens by means of antibodies attaching to the pathogen's binding sites. Antibodies bind to and block ligand sites on the pathogen which prevents these sites from attaching to target cell receptors and so cell entry is inhibited. Many studies investigate the role of humoral immunity for protection against chlamydial challenge and they have shown that neutralization of the chlamydial body requires a large number of attached antibodies. Steric hindrance greatly influences the number of available sites that may be bound, reducing relative occupancy well below 100%. We model steric effects of antibody Fab fragment attachment indicating that they must be taken into consideration to accurately model valency, the number of available binding sites. We derive a partial differential equation for the number of antibody Fabs and host cell receptors that are aggregated to extracellular chlamydial elementary bodies. We consider steric effects in describing the size distribution of aggregates. Our theory is in good agreement with Monte Carlo simulations of binding. We use our theoretical prediction for the valency in a model for the in-host population dynamics of a chlamydial infection and we fit our model to experimental data. 相似文献
89.
The Absence of Somatic Effects of P-M Hybrid Dysgenesis in DROSOPHILA MELANOGASTER 总被引:3,自引:0,他引:3 下载免费PDF全文
M. Catharine McElwain 《Genetics》1986,113(4):897-918
The wings and abdomens of dysgenic and nondysgenic control flies were scored for the presence of clones of cells mutant for first and third chromosome markers. These exceptional clones can arise from mitotic recombination, de novo mutation or deletion, and P-M hybrid dysgenesis has been shown to increase the frequency of parallel processes occurring in germ-line cells. Particular attention was given to careful genetic and molecular characterization of all stocks and to providing adequate and appropriate controls so that even very small increases in somatic clone frequency due to P-M hybrid dysgenesis would be detected. No difference was found in the frequency, size distribution or anatomical distribution of mutant somatic clones correlated to hybrid dysgenesis, confirming previous indications. The potential adaptive significance of a germ-line restriction of P-M hybrid dysgenesis is discussed. 相似文献
90.
Severe burns can be very traumatic for the patient, and while burns caused by industrial or domestic accidents are common,
there are also increasing numbers of burns associated with terrorism. A novel technique to assist in the healing process is
to spray skin cells, keratinocytes, that are cultured from the patient’s own tissue, directly onto the burn site. This process
involves taking some undamaged skin from the patient, allowing the skin cells to proliferate rapidly in the laboratory over
a period of 5–10 days, harvesting and separating the cells and then spraying them onto the burn. This paper deals with keratinocytes
that have been cultured in vitro for a short period of time (early passage cultured cells). The spraying process has yet to
be optimised with respect to the seeding density required for fastest re-epithelisation and thus there is a need for this
process to be modelled. In this paper, we review some of the skin biology and develop a mathematical model of the growth patterns
of cell colonies after they have been applied using a aerosolised technique. The model allows us to predict coverage over
time and can be used as a decision support tool for clinicians.
PACS: 92B05 相似文献