首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   122篇
  免费   18篇
  140篇
  2016年   1篇
  2015年   1篇
  2014年   6篇
  2013年   3篇
  2012年   5篇
  2011年   4篇
  2010年   2篇
  2009年   4篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2004年   2篇
  2003年   5篇
  2002年   3篇
  2001年   3篇
  2000年   2篇
  1999年   5篇
  1998年   9篇
  1997年   2篇
  1996年   7篇
  1995年   3篇
  1994年   1篇
  1993年   3篇
  1992年   3篇
  1991年   2篇
  1990年   2篇
  1989年   5篇
  1988年   3篇
  1987年   4篇
  1986年   4篇
  1985年   2篇
  1984年   2篇
  1983年   3篇
  1982年   1篇
  1981年   3篇
  1980年   2篇
  1979年   2篇
  1978年   3篇
  1977年   2篇
  1976年   2篇
  1975年   2篇
  1974年   1篇
  1972年   2篇
  1971年   4篇
  1970年   1篇
  1968年   2篇
  1964年   1篇
  1961年   1篇
  1934年   1篇
排序方式: 共有140条查询结果,搜索用时 15 毫秒
91.
Age-related differences in the thermoregulatory response to morphine have been shown in rats. To determine if these age-related differences would be reflected in the acquisition of tolerance, we studied morphine tolerance induced by either a single morphine dose or implantation of a morphine pellet. precipitated withdrawal was also analyzed by inducing withdrawal with naloxone in morphine-pelleted rats. Senescent (26 or 27 month old), mature (10 or 11 month old) and young (3 or 4 month old) male Fischer 344 rats were restrained and changes in rectal temperature were monitored for six hours after morphine administration. Only mature and young rats exhibited increased hyperthermic responses to a second low dose of morphine (5 mg/kg s.c.). Only young rats became tolerant after a single higher morphine dose (25 mg/kg s.c.). All age groups showed tolerance three days after morphine pellet implantation. Hypothermia was equivalent in all age groups when withdrawal was induced by naloxone in morphine-pelleted rats. These results indicate that older rats were more resistant to the acquisition of tolerance to the thermic effects of morphine; however; with continued morphine treatment, rats became tolerant regardless of age.  相似文献   
92.
Methods for measurement of glyceraldehyde-P dehydrogenase, triose-P isomerase, fructose 1,6-diphosphate aldolase, and the DPN-linked and flavin-linked α-glycero-P dehydrogenases in small amounts of tissue have been worked out. These enzymes have been measured in ten tracts in rabbit central nervous system. The activities of all the enzymes measured, except the flavin-linked α-glycero-P dehydrogenase, are present in larger amounts in lightly myelinated than in heavily myelinated tracts, but are relatively low in fibrillar layer of olfactory bulb, which is unmyelinated. Aldolase, like P-fructokinase (measured previously), is especially low in fibrillar layer. Taken together with relatively high 6-P-gluconate dehydrogenase activity found earlier this supports the hypothesis that the pentose-P shunt is particularly active in this tract. The activity of DPN-linked α-glycero-P dehydrogenase is inversely proportional to the lipid content of the myelinated tracts, which suggests that its primary role is not related to lipid synthesis in adult brain. The activities of flavin-linked α-glycero-P dehydrogenase are unrelated to those of the DPN-linked enzyme, which is contrary to expectation if the two enzymes function as partners in the "α-glycerophosphate shuttle."  相似文献   
93.
94.
Abstract— Orthograde and retrograde axoplasmic transport of selected axonal organelles were examined by monitoring accumulation of enzyme activities residing in various types of particles proximal and distal to a ligature placed on rat sciatic nerve as a function of time after tying. Proximal to the tie, activity of acetylcholinesterase (AChE, EC 3.1.1.7; probably in small endoplasmic reticulum-like particles) accumulated for 2 days; then, during the next 5 days, the accumulation disappeared. Activities of glutamic dehydrogenase (GDH, EC 1.4.1.3) and monoamine oxidase (MAO, EC 1.4.3.4) (both located in mitochondria) accumulated steadily for 7 days. Accumulation of monoamine oxidase activity was more rapid than that of glutamic dehydrogenase during the first day or two. Acid phosphatase (acid P'tase, EC 3.1.3.2; in lysosomes) activity also accumulated throughout the week of observation. Accumulation of all four enzyme activities proximal to the ligature was blocked by nerve crush or subepineurial vinblastine injection 1 cm or more proximal to the site of the tie. Distal to the ligature, AChE activity accumulated early (14 h), and then gradually disappeared in the course of the week. MAO activity also accumulated, with a maximum at 2 days, and no further change thereafter. GDH activity, on the other hand, showed little accumulation during the first 2 days, but did appear in modest amounts at the end of the week. Distal accumulation of acid P'tase kept pace with proximal accumulation for the first day, and continued more slowly for another day, after which there was no further change. This system has been used to study the effects of axonal crush injury upon anterograde and retrograde axoplasmic transport. A tie applied at various times after injury, proximal to the site of injury, was used to show that orthograde transport of AChE was maintained for 1 day after tying, but at 2 days had fallen 50% or more, and within a week was down to 20–25% of control. At 3 days after injury retrograde transport of AChE activity was not different from the control. Orthograde transport of acid P'tase activity was depressed 35% by injury. Retrograde transport of acid P'tase was inhibited more than 50% both at 3 and at 7 days after injury. Transport of the mitochondrial enzymes was not measurably affected.  相似文献   
95.
96.
Frog (Rana pipiens) sciatic nerve was incubated, with and without stimulation, in an oil bath. The correlation between changes in the magnitude of the compound action potential (α and β) and changes in metabolites, particularly energy reserves, during anoxia and recovery from anoxia was studied. The time to extinction of the action potential in anoxia was frequency-dependent. The action potential could not be restored, nor its extinction delayed, by washing the nerve in O2-free Ringer's solution. Therefore, in this system extracellular K+ accumulation was not a significant factor in blocking impulse conduction. At the time of complete nerve block resulting from anoxia (90 min at rest), ATP, P-creatine and glucose were 30, 10 and 10 per cent, respectively, of initial levels. Glycogen did not fall below 42 per cent of control levels even after 5 h of anoxia. Changes in the levels of energy reserves during anoxia were used to calculate the metabolic rate of nerves at rest and during stimulation. In one series of experiments, the resting metabolic rate was 0·12 mequiv. of ‘high-energy phosphate’ (~P)/kg/min. Stimulation increased the metabolic rate to 0·22 mequiv. of ~P/kg/min at 30 Hz and to 0·29 mequiv. of ~P/kg/min at 100 Hz. The change in metabolic rate when the nerve passed from the resting to the stimulated state was quite abrupt, an observation suggesting that the slow transition observed with methods monitoring O2, consumption was largely instrumental. In nerve stimulated to exhaustion in the absence of O2, neither ATP nor P-creatine had fully recovered within 60 min after O2, was readmitted, although the action potential reached supranormal levels 15 min after return to O2. The ratio of lactate: pyruvate, which increased as expected during anoxia, paradoxically increased even further after O2, was readmitted. The rate of energy utilization during recovery was 0·30 mequiv. of ~P/kg/min. Nerves stimulated at 100–200 Hz in O2, exhibited no changes in levels of P-creatine, ATP or lactate, an observation implying that the nerve could not be made to use ~P faster than oxidation of glucose could provide it. This meant that the maximal metabolic rate was not limited by the rate of supply of chemical energy. Instead, the limitation may have arisen as a result of a limited rate at which ionic imbalance can result from stimulation or a limited pump capacity of the axonal membrane. Nerves stimulated at 200 Hz in O2 for 20 min and then transferred to an O2-free environment without further stimulation exhibited an increase in the rate of energy utilization (nearly two-fold) over the resting rate, a finding that suggested a metabolic (ionic?) debt as a result of activity which could not be met even though the energy supply was adequate. Therefore, restriction of energy expenditure by a limiting pumping rate seemed to be the most likely explanation. The resting metabolic rate of frog sciatic nerve was only one-quarter to one-third of the rate for rat sciatic nerve, when compared at the same temperature (25°C).  相似文献   
97.
The DNA polymerase (DNApol) of Autographa californica nuclear polyhedrosis virus was purified to homogeneity from recombinant baculovirus-infected cells. DNApol was active in polymerase assays on singly primed M13 template, and full-length replicative form II product was synthesized at equimolar ratios of enzyme to template. The purified recombinant DNApol was shown to be processive by template challenge assay. Furthermore, DNApol was able to incorporate hundreds of nucleotides on an oligo(dT)-primed poly(dA) template with limiting amounts of polymerase. DNApol has moderate strand displacement activity, as it was active on nicked and gapped templates, and displaced a primer in a replication-dependent manner. Addition of saturating amounts of LEF-3, the viral single-stranded DNA-binding protein (SSB), increased the innate strand displacement ability of DNApol. However, when LEF-3 was added prior to the polymerase, it failed to stimulate DNApol replication on a singly primed M13 template because the helix-destabilizing activity of LEF-3 caused the primer to dissociate from the template. Escherichia coli SSB efficiently substituted for LEF-3 in the replication of a nicked template, suggesting that specific protein-protein interactions were not required for strand displacement in this assay.  相似文献   
98.
In HIV-1 infection, the abrupt rise in CD4 T cells after effective antiretroviral therapy has been viewed as a measure of HIV-1-related CD4 T cell turnover in the steady state. The early (2-4 wk) response is reportedly dominated by CD4 T cells with a memory (CD45RO) phenotype. It is controversial whether the measurement of steady-state kinetics identifies cells that otherwise would have been recruited into a short-lived, virus-producing pool or reflects lymphoid redistribution/sequestration. We performed detailed phenotypic and kinetic analysis of CD4 T cell subsets in 14 patients. Turnover occurs in memory (CD45RO) as well as naive (CD45RA) cells, if the latter are present at baseline. Most of the turnover occurs in those memory (CD45RO) and naive (CD45RA) cells that are programmed for recirculation through lymphoid organs (CD62L+ and CD44low), whereas very little turnover occurs in memory cells (CD45RO) destined for recirculation from blood to tissue (CD62L- and CD44high). Turnover occurs in both activated (CD25+ and HLA-DR+) and nonactivated populations, although it is restricted to CD38-positive cells, indicating that turnover does not measure cells that are already infected. More likely, turnover occurs in cells that replace infected cells or are on their way to becoming infected. Taken together, markers of lymphocyte trafficking better describe cell turnover related to virus replication than do naive and memory markers per se, and lymph organs, not tissue-destined cells or peripheral blood cells, appear to be the important site of virus replication and CD4 T cell turnover, destruction, and redistribution.  相似文献   
99.
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号