首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   122篇
  免费   18篇
  2016年   1篇
  2015年   1篇
  2014年   6篇
  2013年   3篇
  2012年   5篇
  2011年   4篇
  2010年   2篇
  2009年   4篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2004年   2篇
  2003年   5篇
  2002年   3篇
  2001年   3篇
  2000年   2篇
  1999年   5篇
  1998年   9篇
  1997年   2篇
  1996年   7篇
  1995年   3篇
  1994年   1篇
  1993年   3篇
  1992年   3篇
  1991年   2篇
  1990年   2篇
  1989年   5篇
  1988年   3篇
  1987年   4篇
  1986年   4篇
  1985年   2篇
  1984年   2篇
  1983年   3篇
  1982年   1篇
  1981年   3篇
  1980年   2篇
  1979年   2篇
  1978年   3篇
  1977年   2篇
  1976年   2篇
  1975年   2篇
  1974年   1篇
  1972年   2篇
  1971年   4篇
  1970年   1篇
  1968年   2篇
  1964年   1篇
  1961年   1篇
  1934年   1篇
排序方式: 共有140条查询结果,搜索用时 15 毫秒
41.
Most of the >50,000 different pharmacologically active peptides in Conus venoms belong to a small number of gene superfamilies. In this work, the M-conotoxin superfamily is defined using both biochemical and molecular criteria. Novel excitatory peptides purified from the venoms of the molluscivorous species Conus textile and Conus marmoreus all have a characteristic pattern of Cys residues previously found in the mu-, kappaM-, and psi-conotoxins (CC-C-C-CC). The new peptides are smaller (12-19 amino acids) than the mu-, kappaM-, and psi-conotoxins (22-24 amino acids). One peptide, mr3a, was chemically synthesized in a biologically active form. Analysis of the disulfide bridges of a natural peptide tx3c from C. textile and synthetic peptide mr3a from C. marmoreus showed a novel pattern of disulfide connectivity, different from that previously established for the mu- and psi-conotoxins. Thus, these peptides belong to a new group of structurally and pharmacologically distinct conotoxins that are particularly prominent in the venoms of mollusc-hunting Conus species. Analysis of cDNA clones encoding the novel peptides as well as those encoding mu-, kappaM-, and psi-conotoxins revealed highly conserved amino acid residues in the precursor sequences; this conservation in both amino acid sequence and in the Cys pattern defines a gene superfamily, designated the M-conotoxin superfamily. The peptides characterized can be provisionally assigned to four distinct groups within the M-superfamily based on sequence similarity within and divergence between each group. A notable feature of the superfamily is that two distinct structural frameworks have been generated by changing the disulfide connectivity on an otherwise conserved Cys pattern.  相似文献   
42.
The P143 protein of Autographa californica nuclear polyhedrosis virus is essential for replication of viral DNA. To determine the function of P143, the protein was purified to near homogeneity from recombinant baculovirus-infected cells that overexpress P143. ATPase activity copurified with P143 protein during purification and also during gel filtration at a high salt concentration. The ATPase activity did not require the presence of single-stranded DNA, but was stimulated fourfold by the addition of single-stranded DNA. The ATPase activity of P143 had a K(m) of 60 microM and a turnover of 4.5 molecules of ATP hydrolyzed/s/molecule of enzyme, indicating moderate affinity for ATP and high catalytic efficiency. P143 unwound a 40-nucleotide primer in an ATP-dependent manner, indicating that the enzyme possesses in vitro DNA helicase activity. Based on this result, it seems likely that P143 functions as a helicase in viral DNA replication.  相似文献   
43.
44.
Eleven enzymes were measured in individual fibers of soleus and tibialis anterior (TA) muscles from two flight and two control (synchronous) animals. There were five enzymes of glycogenolytic metabolism: phosphorylase, glucose-6-phosphate isomerase, glycerol-3-phosphate dehydrogenase, pyruvate kinase, and lactate dehydrogenase (group GLY); five of oxidative metabolism: citrate synthase, malate dehydrogenase, beta-hydroxyacyl-CoA dehydrogenase, 3-ketoacid CoA-transferase, and mitochondrial thiolase (group OX); and hexokinase, subserving both groups. Fiber size (dry weight per unit length) was reduced about 35% in both muscles. On a dry weight basis, hexokinase levels were increased 100% or more in flight fibers from both soleus and TA. Group OX enzymes increased 56-193% in TA without significant change in soleus. Group GLY enzymes increased an average of 28% in soleus fibers but underwent, if anything, a modest decrease (20%) in TA fibers. These changes in composition of TA fibers were those anticipated for a conversion of about half of the originally predominant fast glycolytic fibers into fast oxidative glycolytic fibers. Calculation on the basis of fiber length, rather than dry weight, gave an estimate of absolute enzyme changes: hexokinase was still calculated to have increased in both soleus and TA fibers, but only by 50 and 25%, respectively. Three of the OX enzymes were, on this basis, unchanged in TA fibers, but 3-ketoacid CoA-transferase and thiolase had still nearly doubled, whereas TA GLY enzymes had fallen about 40%. In soleus fibers, absolute levels of OX enzymes had decreased an average of 25% and GLY enzymes were marginally decreased.  相似文献   
45.
The present study describes an improved method for measuring angiotensin III in arterial blood. This was accomplished by SE-sephadex column to separate angiotensin II from angiotensin III prior to radioimmunoassay. The arterial concentration of angiotensin III measured before and after 24 to 48 hours sodium depletion by acute cannulation of parotid gland was 12.4 ± 1.7 fmol/ml (SEM, n=7) and 49.8 ± 10.3 fmol/ml (SEM, n=7) respectively. The arterial concentration of Val4-angiotensin III obtained from continuous infusion of Val4-angiotensin III at rates of 24 and 48 nmol/h in sodium deficient sheep were 245 ± 32.5 fmol/ml (n=6) and 330 ± 11.4 fmol/ ml (n=7) respectively. The clearance rate of exogenous Val4-angiotensin III in sodium deficient sheep after correction for endogenous level was calculated to be 140 ± 13.6 L/h (SEM, n=13). This was in the same order as Ile5-angiotensin II and Ile4-angiotensin III reported earlier in sodium replete sheep. Prolonged intravenous infusion of Val4-angiotensin III at a rate of 48 nmol/h in sodium- deficient sheep suppressed plasma renin concentration to the same extent as equimolar infusions of angiotensin II. This suggests that angiotensin III may inhibit renin secretion by a similar mechanism to angiotensin II.  相似文献   
46.
Brown RJ  Mallory C  McDougal OM  Oxford JT 《Proteomics》2011,11(24):4660-4676
Cartilage plays an essential role during skeletal development within the growth plate and in articular joint function. Interactions between the collagen fibrils and other extracellular matrix molecules maintain structural integrity of cartilage, orchestrate complex dynamic events during embryonic development, and help to regulate fibrillogenesis. To increase our understanding of these events, affinity chromatography and liquid chromatography/tandem mass spectrometry were used to identify proteins that interact with the collagen fibril surface via the amino terminal domain of collagen α1(XI) a protein domain that is displayed at the surface of heterotypic collagen fibrils of cartilage. Proteins extracted from fetal bovine cartilage using homogenization in high ionic strength buffer were selected based on affinity for the amino terminal noncollagenous domain of collagen α1(XI). MS was used to determine the amino acid sequence of tryptic fragments for protein identification. Extracellular matrix molecules and cellular proteins that were identified as interacting with the amino terminal domain of collagen α1(XI) directly or indirectly, included proteoglycans, collagens, and matricellular molecules, some of which also play a role in fibrillogenesis, while others are known to function in the maintenance of tissue integrity. Characterization of these molecular interactions will provide a more thorough understanding of how the extracellular matrix molecules of cartilage interact and what role collagen XI plays in the process of fibrillogenesis and maintenance of tissue integrity. Such information will aid tissue engineering and cartilage regeneration efforts to treat cartilage tissue damage and degeneration.  相似文献   
47.
48.
49.
Sensitive procedures for the assay of a few pmoles of CoASH and its esters in milligram amounts of tissue are described. The cycling method of Stadtman et al., which involves the arsenolysis of acetyl-P catalyzed by CoA and phosphotransacetylase (PTA), has been used. Selective conversion of various CoA esters to free CoA, followed by oxidation of the CoA so liberated, has enabled the specific assay of CoASH, acetyl CoA, succinyl CoA, and acetoacetyl CoA, and allows partition of the remaining CoA esters into three categories: “other PTA-reactive CoA esters,” probably mostly propionyl CoA; “PTA-unreactive CoA esters plus oxidized CoA;” and long-chain (acid-insoluble) CoA esters. Two inclusive categories are “total acid-soluble CoA” and “total CoA.” Preparation of tissue extracts is described. Rapid tissue fixation is essential for the measurement of cerebral levels of succinyl CoA, which fall 50% or more with decapitation, and of acetyl CoA, which rise 25% when the head is amputated.  相似文献   
50.
If a coronary blood vessel is occluded and the neighboring cardiomyocytes deprived of oxygen, subsequent reperfusion of the ischemic tissue can lead to oxidative damage due to excessive generation of reactive oxygen species. Cardiomyocytes and their mitochondria are the main energy producers and consumers of the heart, and their metabolic changes during ischemia seem to be a key driver of reperfusion injury. Here, we hypothesized that tracking changes in cardiomyocyte metabolism, such as oxygen and ATP concentrations, would help in identifying points of metabolic failure during ischemia and reperfusion. To track some of these changes continuously from the onset of ischemia through reperfusion, we developed a system of differential equations representing the chemical reactions involved in the production and consumption of 67 molecular species. This model was validated and used to identify conditions present during periods of critical transition in ischemia and reperfusion that could lead to oxidative damage. These simulations identified a range of oxygen concentrations that lead to reverse mitochondrial electron transport at complex I of the respiratory chain and a spike in mitochondrial membrane potential, which are key suspects in the generation of reactive oxygen species at the onset of reperfusion. Our model predicts that a short initial reperfusion treatment with reduced oxygen content (5% of physiological levels) could reduce the cellular damage from both of these mechanisms. This model should serve as an open-source platform to test ideas for treatment of the ischemia reperfusion process by following the temporal evolution of molecular concentrations in the cardiomyocyte.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号