首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   652篇
  免费   61篇
  713篇
  2021年   10篇
  2020年   5篇
  2019年   12篇
  2018年   9篇
  2017年   13篇
  2016年   17篇
  2015年   24篇
  2014年   32篇
  2013年   33篇
  2012年   26篇
  2011年   32篇
  2010年   19篇
  2009年   21篇
  2008年   37篇
  2007年   28篇
  2006年   23篇
  2005年   22篇
  2004年   20篇
  2003年   24篇
  2002年   14篇
  2001年   24篇
  2000年   18篇
  1999年   15篇
  1998年   13篇
  1997年   8篇
  1996年   12篇
  1995年   4篇
  1994年   9篇
  1993年   5篇
  1992年   9篇
  1991年   12篇
  1990年   7篇
  1989年   8篇
  1988年   4篇
  1987年   6篇
  1986年   8篇
  1982年   5篇
  1981年   5篇
  1980年   5篇
  1977年   5篇
  1975年   6篇
  1974年   6篇
  1972年   8篇
  1971年   5篇
  1970年   5篇
  1968年   6篇
  1967年   5篇
  1966年   3篇
  1965年   3篇
  1945年   4篇
排序方式: 共有713条查询结果,搜索用时 0 毫秒
21.
The processes that occur at the micro‐scale site of calcification are fundamental to understanding the response of coral growth in a changing world. However, our mechanistic understanding of chemical processes driving calcification is still evolving. Here, we report the results of a long‐term in situ study of coral calcification rates, photo‐physiology, and calcifying fluid (cf) carbonate chemistry (using boron isotopes, elemental systematics, and Raman spectroscopy) for seven species (four genera) of symbiotic corals growing in their natural environments at tropical, subtropical, and temperate locations in Western Australia (latitudinal range of ~11°). We find that changes in net coral calcification rates are primarily driven by pHcf and carbonate ion concentration []cf in conjunction with temperature and DICcf. Coral pHcf varies with latitudinal and seasonal changes in temperature and works together with the seasonally varying DICcf to optimize []cf at species‐dependent levels. Our results indicate that corals shift their pHcf to adapt and/or acclimatize to their localized thermal regimes. This biological response is likely to have critical implications for predicting the future of coral reefs under CO2‐driven warming and acidification.  相似文献   
22.
In fibrous connective tissues, fibroblasts are organized into syncytia, cellular networks that enable matrix remodeling and that are interconnected by intercellular adherens junctions (AJs). The AJs of fibroblasts are mediated by N-cadherin, a broadly expressed classical cadherin that is critically involved in developmental processes, wound healing and several diseases of mesenchymal tissues. In contrast to E-cadherin-dependent junctions of epithelia, the formation of AJs in fibrous connective tissues is relatively uncharacterized. Work over the last several years has documented an expanding list of molecules which function to regulate N-cadherin mediated junctions such as: Fer, PTP1B, cortactin, calcium, gelsolin, PIP5KIgamma, PIP2, and the Rho family of GTPases. We present an overview on the regulation of N-cadherin-mediated junction formation that highlights recent molecular advances in the field and rationalizes the roles of N-cadherin in connective tissue function.  相似文献   
23.
The major eukaryotic mismatch repair (MMR) pathway requires Msh2-Msh6, which, like Escherichia coli MutS, binds to and participates in repair of the two most common replication errors, single base-base and single base insertion-deletion mismatches. For both types of mismatches, the side chain of E. coli Glu38 in a conserved Phe-X-Glu motif interacts with a mismatched base. The Ovarepsilon of Glu38 forms a hydrogen bond with either the N7 of purines or the N3 of pyrimidines. We show here that changing E. coli Glu38 to alanine results in nearly complete loss of repair of both single base-base and single base deletion mismatches. In contrast, a yeast strain with alanine replacing homologous Glu339 in Msh6 has nearly normal repair for insertion-deletion and most base-base mismatches, but is defective in repairing base-base mismatches characteristic of oxidative stress, e.g. 8-oxo-G.A mismatches. The results suggest that bacterial MutS and yeast Msh2-Msh6 differ in how they recognize and/or process replication errors involving undamaged bases, and that Glu339 in Msh6 may have a specialized role in repairing mismatches containing oxidized bases.  相似文献   
24.
Recent interest has focused on the importance of the nucleus and associated nucleoskeleton in regulating changes in cardiac gene expression in response to biomechanical load. Mutations in genes encoding proteins of the inner nuclear membrane and nucleoskeleton, which cause cardiomyopathy, also disrupt expression of a biomechanically responsive gene program. Furthermore, mutations in the outer nuclear membrane protein Nesprin 1 and 2 have been implicated in cardiomyopathy. Here, we identify for the first time a role for the outer nuclear membrane proteins, Nesprin 1 and Nesprin 2, in regulating gene expression in response to biomechanical load. Ablation of both Nesprin 1 and 2 in cardiomyocytes, but neither alone, resulted in early onset cardiomyopathy. Mutant cardiomyocytes exhibited altered nuclear positioning, shape, and chromatin positioning. Loss of Nesprin 1 or 2, or both, led to impairment of gene expression changes in response to biomechanical stimuli. These data suggest a model whereby biomechanical signals are communicated from proteins of the outer nuclear membrane, to the inner nuclear membrane and nucleoskeleton, to result in changes in gene expression required for adaptation of the cardiomyocyte to changes in biomechanical load, and give insights into etiologies underlying cardiomyopathy consequent to mutations in Nesprin 1 and 2.  相似文献   
25.
The aim of this study was to assess the suitability of body mass index, waist circumference, waist-to-height ratio and aerobic fitness as predictors of cardiovascular risk factor clustering in children. A cross-sectional study was conducted with 290 school boys and girls from 6 to 10 years old, randomly selected. Blood was collected after a 12-hour fasting period. Blood pressure, waist circumference (WC), height and weight were evaluated according to international standards. Aerobic fitness (AF) was assessed by the 20-metre shuttle-run test. Clustering was considered when three of these factors were present: high systolic or diastolic blood pressure, high low-density lipoprotein (LDL) cholesterol, high triglycerides, high plasma glucose, high insulin concentrations and low high-density lipoprotein (HDL) cholesterol. A ROC curve identified the cut-off points of body mass index (BMI), WC, waist-to-height ratio (WHtR) and AF as predictors of risk factor clustering. BMI, WC and WHR resulted in significant areas under the ROC curves, which was not observed for AF. The anthropometric variables were good predictors of cardiovascular risk factor clustering in both sexes, whereas aerobic fitness should not be used to identify cardiovascular risk factor clustering in these children.  相似文献   
26.
27.
The formation of adhesion complexes is the rate-limiting step for collagen phagocytosis by fibroblasts, but the role of Ca(2+) and the potential interactions of actin-binding proteins in regulating collagen phagocytosis are not well defined. We found that the binding of collagen beads to fibroblasts was temporally and spatially associated with actin assembly at nascent phagosomes, which was absent in gelsolin null cells. Analysis of tryptic digests isolated from gelsolin immunoprecipitates indicated that non-muscle (NM) myosin IIA may bind to gelsolin. Immunostaining and immunoprecipitation showed that gelsolin and NM myosin IIA associated at collagen adhesion sites. Gelsolin and NM myosin IIA were both required for collagen binding and internalization. Collagen binding to cells initiated a prolonged increase of [Ca(2+)](i), which was absent in cells null for gelsolin or NM myosin IIA. Collagen bead-induced increases of [Ca(2+)](i) were associated with phosphorylation of the myosin light chain, which was dependent on gelsolin. NM myosin IIA filament assembly, which was dependent on myosin light chain phosphorylation and increased [Ca(2+)](i), also required gelsolin. Ionomycin-induced increases of [Ca(2+)](i) overcame the block of myosin filament assembly in gelsolin null cells. We conclude that gelsolin and NM myosin IIA interact at collagen adhesion sites to enable NM myosin IIA filament assembly and localized, Ca(2+)-dependent remodeling of actin at the nascent phagosome and that these steps are required for collagen phagocytosis.  相似文献   
28.
Gelsolin is an abundant actin binding protein that mediates the rapid remodeling of cortical actin filaments through severing, capping, and nucleating activities. Most of the attention on the intracellular function of gelsolin has focused on the remodeling of the cortical actin meshwork but the localization of gelsolin to other regions of the cell suggests that it may have other important functions elsewhere. In cultured fibroblasts, gelsolin is heavily enriched in stress fibers, where its function in these contractile organelles is unknown. To study gelsolin function during stress fiber formation and cell contraction, we first assessed gelsolin levels in stress fiber preparations from lysophosphatidic acid (LPA)-treated human fibroblasts. LPA induced a large, time-dependent, calcium-independent increase of actin, gelsolin, alpha-actinin, and tropomyosin in stress fiber preparations. A microinjected gelsolin antibody that inhibits severing by gelsolin reduced stress fibers. Anti-sense-transfected gelsolin-depleted 3T3 cell lines treated with LPA after serum starvation required approximately 6 h to form stress fibers and focal adhesions, in contrast to control lines transfected with vector only, which formed stress fibers 15 min after addition of LPA. In cells microinjected with the gelsolin antibody that inhibits severing, Mg-ATP-induced cell contraction was greatly reduced in approximately 90% of injected cells compared to cells injected with an irrelevant antibody. Gelsolin-depleted cells were incapable of collagen gel contraction and showed no apparent Mg-ATP-induced cell contraction compared to cell lines transfected with vector only. The involvement of gelsolin in cell contraction and remodeling of collagen gels suggests a novel role for gelsolin in stress fiber-dependent cell function.  相似文献   
29.
Water hyacinth Eichhornia crassipes is considered the most damaging aquatic weed in the world. However, few studies have quantified the impact of this weed economically and ecologically, and even fewer studies have quantified the benefits of its control. This paper focuses on water loss saving as the benefit derived from biological control of this plant between 1990 and 2013 at New Year’s Dam, Alicedale, Eastern Cape, South Africa. Estimates of water loss due to evapotranspiration from water hyacinth vary significantly; therefore, the study used three different rates, high, medium and low. A conservative raw agriculture value of R 0.26 per m3 was used to calculate the benefits derived by the water saved. The present benefit and cost values were determined using 10% and 5% discount rates. The benefit/cost ratio at the low evapotranspiration rate was less than one, implying that biological control was not economically viable but, at the higher evapotranspiration rates, the return justified the costs of biological control. However, at the marginal value product of water, the inclusion of the costs of damage to infrastructure, or the adverse effects of water hyacinth on biodiversity, would justify the use of biological control, even at the low transpiration rate.  相似文献   
30.
The invasive freshwater snail Tarebia granifera (Lamarck, 1822) was first reported in South Africa in 1999 and it has become widespread across the country, with some evidence to suggest that it reduces benthic macroinvertebrate biodiversity. The current study aimed to identify the primary abiotic drivers behind abundance patterns of T. granifera, by comparing the current abundance of the snail in three different regions, and at three depths, of the highly modified Nseleni River in KwaZulu-Natal, South Africa. Tarebia granifera was well established throughout the Nseleni River system, with an overall preference for shallow waters and seasonal temporal patterns of abundance. Although it is uncertain what the ecological impacts of the snail in this system are, its high abundances suggest that it should be controlled where possible and prevented from invading other systems in the region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号