首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   536篇
  免费   47篇
  2023年   3篇
  2021年   10篇
  2020年   5篇
  2019年   10篇
  2018年   8篇
  2017年   8篇
  2016年   10篇
  2015年   13篇
  2014年   22篇
  2013年   27篇
  2012年   19篇
  2011年   29篇
  2010年   13篇
  2009年   18篇
  2008年   37篇
  2007年   26篇
  2006年   20篇
  2005年   15篇
  2004年   19篇
  2003年   24篇
  2002年   13篇
  2001年   20篇
  2000年   14篇
  1999年   10篇
  1998年   7篇
  1997年   5篇
  1996年   6篇
  1994年   8篇
  1993年   5篇
  1992年   8篇
  1991年   12篇
  1990年   7篇
  1989年   8篇
  1988年   3篇
  1987年   3篇
  1986年   7篇
  1984年   3篇
  1983年   3篇
  1982年   4篇
  1981年   3篇
  1980年   3篇
  1975年   5篇
  1974年   5篇
  1972年   7篇
  1971年   5篇
  1970年   5篇
  1968年   6篇
  1967年   5篇
  1966年   3篇
  1945年   4篇
排序方式: 共有583条查询结果,搜索用时 15 毫秒
511.
512.
The interplay of balancing selection within a species and rapid gene evolution between species can confound our ability to determine the functional equivalence of interspecific and intergeneric pairs of alleles underlying reproduction. In crucifer plants, mating specificity in the barrier to self-fertilization called self-incompatibility (SI) is controlled by allele-specific interactions between two highly polymorphic and co-evolving proteins, the S-locus receptor kinase (SRK) and its S-locus cysteine rich (SCR) ligand. These proteins have diversified both within and between species such that it is often difficult to determine from sequence information alone if they encode the same or different SI specificity. The self-fertile Arabidopsis thaliana was derived from an obligate outbreeding ancestor by loss of self-incompatibility, often in conjunction with inactivation of SRK or SCR. Nevertheless, some accessions of A. thaliana can express self-incompatibility upon transformation with an SRKSCR gene pair isolated from its self-incompatible close relative A. lyrata. Here we show that several additional and highly diverged SRK/SCR genes from A. lyrata and another crucifer plant, Capsella grandiflora, confer self-incompatibility in A. thaliana, either as intact genes isolated from genomic libraries or after manipulation to generate chimeric fusions. We describe how the use of this newly developed chimeric protein strategy has allowed us to test the functional equivalence of SRK/SCR gene pairs from different taxa and to assay the functionality of endogenous A. thaliana SRK and SCR sequences.MATING reactions in plants, fungi, and animals are strongly influenced by molecular recognition machineries that act as gauges of genetic relatedness (Brown and Casselton 2001; Nasrallah 2005; Yamazaki and Beauchamp 2007). Many plants with hermaphroditic flowers have evolved inbreeding avoidance mechanisms, known as self-incompatibility (SI) systems. These systems are based on the ability of the female reproductive apparatus (the pistil) to discriminate among genetically distinct pollen grains, resulting in the failure of self-pollination despite functional female and male reproductive structures. In the Brassicaceae (crucifers), specific recognition of pollen by the epidermal cells of the stigma (a structure located at the tip of the pistil) is controlled by haplotypes of the S locus, and activation of the SI response leading to inhibition of pollen tube growth occurs if pollen and stigma are derived from plants that express the same S-locus haplotype (S haplotype). Within self-incompatible crucifer species, the number of S haplotypes and corresponding SI specificities is usually high, with >50 reported in some species (Watanabe et al. 2000), and SI dictates that self-incompatible plants are typically heterozygous and carry two S haplotypes. Each S haplotype is composed of two highly polymorphic genes that are the determinants of SI specificity in stigma and pollen (Stein et al. 1991; Schopfer et al. 1999). The S-locus receptor kinase (SRK) gene encodes a single-pass transmembrane serine/threonine kinase localized on the surface of stigma epidermal cells, and the S-locus cysteine-rich protein (SCR) gene encodes a small peptide localized in the pollen coat. SCR is the ligand for SRK and will bind to the extracellular domain of SRK (hereafter eSRK) only if both proteins are encoded by the same S-locus haplotype (Kachroo et al. 2001; Takayama et al. 2001; Chookajorn et al. 2004). The binding of SCR to its cognate eSRK triggers an intracellular phosphorylation cascade that results in pollen rejection by a poorly understood mechanism.A mechanistic understanding of the recognition phase of SI requires detailed structure–function analyses of SRK and SCR aimed at identifying the amino acid residues that determine their allele-specific interaction and explaining the puzzling dominance/recessive interactions exhibited by different SRK alleles in the heterozygous stigmas of self-incompatible plants (Hatakeyama et al. 2001; Mable et al. 2003; Prigoda et al. 2005). Such structure–function studies require an experimental system that allows efficient in vivo functional analysis of large numbers of SRK and SCR sequence variants generated in vitro by site-directed mutagenesis or domain swapping between proteins that determine different SI specificities. The recent transfer of the SI trait into Arabidopsis thaliana has established this species as a model organism for mechanistic and evolutionary studies of mating systems in crucifers (Nasrallah et al. 2002, 2004). However, to date, only one SI specificity, that which is determined by the Sb haplotype of A. lyrata, has been successfully introduced into A. thaliana and shown to alter the plant''s mating reaction from strict autogamy to full SI. To exploit fully the A. thaliana transgenic SI model, additional S haplotypes must be introduced into this species. In addition to facilitating mechanistic studies of the SRK–SCR interaction and dominance relationships, the expression of multiple SI specificities in A. thaliana promises to shed light on processes underlying the diversification of SRK and SCR genes. For example, expression in A. thaliana of SI specificities derived from different crucifer species will allow direct assays of the functional equivalence or nonequivalence of the corresponding S haplotypes, an issue that is difficult to resolve on the basis of sequence information alone.Although conceptually simple, expressing different SI specificities by transformation with different SRK/SCR gene pairs is not a straightforward proposition. Difficulties stem largely from the availability of appropriate cloned SRK/SCR variants for use in transformation experiments. A large number of SRK/SCR gene pairs are available from Brassica species as a result of extensive and long-standing studies of SI. However, attempts to restore SI in transgenic A. thaliana using Brassica S-locus genes had met with failure (Bi et al. 2000; J. B. Nasrallah, unpublished data), possibly because of the inability of Brassica SRKs to interact productively with A. thaliana components of the SI signal transduction pathway. In the past few years, studies of SI were initiated in self-incompatible species more closely related to A. thaliana, such as A. lyrata, A. halleri, and Capsella grandiflora. However, with a few exceptions, these studies produced only partial SRK and SCR sequences amplified from genomic DNA (Schierup et al. 2001; Prigoda et al. 2005; Bechsgaard et al. 2006; Paetsch et al. 2006). The challenging task of cloning the very highly polymorphic SCR sequences and complete SRK and SCR genes, which requires genomic library construction and in many cases chromosome walking, has only been accomplished for two S haplotypes of A. lyrata, Sb (hereafter AlSb, which was used in previous transformation studies (Nasrallah et al. 2002, 2004), and Sa (AlSa; Kusaba et al. 2001), and for the S7 haplotype of C. grandiflora (CgS7; Nasrallah et al. 2007).In this article, we report the isolation of two new SRK/SCR gene pairs from genomic libraries of A. lyrata and expression of the corresponding SI specificities in A. thaliana. We also describe a novel strategy for rapid and efficient transfer of several distinct SI specificities into A. thaliana, which only requires knowledge of the eSRK sequence and SCR second-exon sequences that encode the mature SCR protein.  相似文献   
513.
Although the physiological states of hypertrophic remodeling and congestive heart failure have been intensively studied, less is known about the transition from one to the other. The use of genetically engineered murine models of heart failure has proven valuable in characterizing the progression of remodeling and its ultimate decompensation to failure. Mice deficient in the cytoskeletal muscle LIM-only protein (MLP) are known to present with a clinical picture of dilated cardiomyopathy and transition to failure as adults. Longitudinal high-field magnetic resonance (MR) cardiac imaging provided a time course of remodeling where an improvement in ejection fraction and stroke volume (15- vs. 31-wk MLP(-/-) mice; P < 0.0001) was temporally concurrent with an abrupt phase of end-diastolic chamber dilatation. Hemodynamic analysis conducted throughout that dilatation phase showed improved ratio of maximum first derivative of pressure to end-diastolic pressure (dP/dt(max)/EDP; 15- vs. 31-wk MLP(-/-) mice; P < 0.0005), ratio of minimum first derivative of pressure to EDP (dP/dt(min)/EDP; 15- vs. 31-wk MLP(-/-) mice; P < 0.003), and developed pressure (15- vs. 31-wk MLP(-/-) mice; P < 0.0001) levels in the MLP(-/-) mice. Computational modeling techniques were used to estimate the EDP volume relationship, revealing that although MLP hearts possess a stiffer stress-strain relation, chamber compliance increased as a function of dilatation. This detailed physiological characterization during a phase of rapid anatomical remodeling suggests that systolic function in the MLP(-/-) mice may temporarily improve as a result of alterations in chamber compliance, which are mediated by dilatation. In turn, a balance may exist between exploiting the Frank-Starling mechanism and altering chamber compliance that maintains function in the absence of hypertrophic growth. Though initially compensatory, this process may exhaust itself and consequently transition to a maladaptive course.  相似文献   
514.
The evolution of color vision is often studied through the lens of receptor gain relative to an ancestor with fewer spectral classes of photoreceptor. For instance, in Heliconius butterflies, a genus-specific UVRh opsin duplication led to the evolution of UV color discrimination in Heliconius erato females, a rare trait among butterflies. However, color vision evolution is not well understood in the context of loss. In Heliconius melpomene and Heliconius ismenius lineages, the UV2 receptor subtype has been lost, which limits female color vision in shorter wavelengths. Here, we compare the visual systems of butterflies that have either retained or lost the UV2 photoreceptor using intracellular recordings, ATAC-seq, and antibody staining. We identify several ways these butterflies modulate their color vision. In H. melpomene, chromatin reorganization has downregulated an otherwise intact UVRh2 gene, whereas in H. ismenius, pseudogenization has led to the truncation of UVRh2. In species that lack the UV2 receptor, the peak sensitivity of the remaining UV1 photoreceptor cell is shifted to longer wavelengths. Across Heliconius, we identify the widespread use of filtering pigments and co-expression of two opsins in the same photoreceptor cells. Multiple mechanisms of spectral tuning, including the molecular evolution of blue opsins, have led to the divergence of receptor sensitivities between species. The diversity of photoreceptor and ommatidial subtypes between species suggests that Heliconius visual systems are under varying selection pressures for color discrimination. Modulating the wavelengths of peak sensitivities of both the blue- and remaining UV-sensitive photoreceptor cells suggests that Heliconius species may have compensated for UV receptor loss.  相似文献   
515.
Aspergillus fumigatus is often isolated from the lungs of cystic fibrosis (CF) patients, but unlike in severely immunocompromised individuals, the mortality rates are low. This suggests that competition from bacteria within the CF lung may be inhibitory. The purpose of this study was to investigate how Pseudomonas aeruginosa influences A. fumigatus conidial germination and biofilm formation. Aspergillus fumigatus biofilm formation was inhibited by direct contact with P. aeruginosa, but had no effect on preformed biofilm. A secreted heat-stable soluble factor was also shown to exhibit biofilm inhibition. Coculture of P. aeruginosa quorum-sensing mutants (PAO1:ΔLasI, PAO1:ΔLasR) did not significantly inhibit A. fumigatus biofilms (52.6-58.8%) to the same extent as that of the PA01 wild type (22.9-30.1%), both by direct and by indirect interaction (P<0.001). Planktonic and sessile inhibition assays with a series of short carbon chain molecules (decanol, decanoic acid and dodecanol) demonstrated that these molecules could both inhibit and disrupt biofilms in a concentration-dependent manner. Overall, this suggests that small diffusible and heat-stable molecules may be responsible for the competitive inhibition of filamentous fungal growth in polymicrobial environments such as the CF lung.  相似文献   
516.
Access to the cell cytoplasm in viable cells may permit direct labeling or manipulation of intracellular molecules and metabolic processes. One method to gain access to the cell cytoplasm is by electroporation, a technique that transiently creates pores in cell membranes by means of applied electrical fields. We used electroporation to introduce large-molecular-mass dextrans and proteins as probes of the cytoplasmic compartment in human gingival fibroblasts. Electrical field strength and pulse decay time were optimized to obtain cellular viability greater than 80%. Analysis by confocal microscopy and by fluorescence spectrophotometry demonstrated that a large proportion of high-molecular-mass probe was membrane-bound after electroporation. Trypsinization did not affect membrane-bound FITC-dextran but eliminated protein probe incorporated into the membrane, thereby permitting measurement of only intracellular, cytoplasmic label. Proteins of up to 66 kDa were incorporated at intracellular concentrations of 10(-15) M. After electroporation under optimal conditions, incorporated anti-vimentin antibodies were capable of binding to vimentin. Cells electroporated in the presence of RNase A exhibited significant reductions of cellular RNA. Electroporation appears to be a useful approach to probe or perturb specific cellular processes by introduction of functional molecular species into the cytoplasm of viable cells.  相似文献   
517.
Ciclopirox (CPX) is an FDA-approved topical antifungal agent that has demonstrated preclinical anticancer activity in a number of solid and hematologic malignancies. Its clinical utility as an oral anticancer agent, however, is limited by poor oral bioavailability and gastrointestinal toxicity. Fosciclopirox, the phosphoryloxymethyl ester of CPX (Ciclopirox Prodrug, CPX-POM), selectively delivers the active metabolite, CPX, to the entire urinary tract following parenteral administration. We characterized the activity of CPX-POM and its major metabolites in in vitro and in vivo preclinical models of high-grade urothelial cancer. CPX inhibited cell proliferation, clonogenicity and spheroid formation, and increased cell cycle arrest at S and G0/G1 phases. Mechanistically, CPX suppressed activation of Notch signaling. Molecular modeling and cellular thermal shift assays demonstrated CPX binding to γ-secretase complex proteins Presenilin 1 and Nicastrin, which are essential for Notch activation. To establish in vivo preclinical proof of principle, we tested fosciclopirox in the validated N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN) mouse bladder cancer model. Once-daily intraperitoneal administration of CPX-POM for four weeks at doses of 235 mg/kg and 470 mg/kg significantly decreased bladder weight, a surrogate for tumor volume, and resulted in a migration to lower stage tumors in CPX-POM treated animals. This was coupled with a reduction in the proliferation index. Additionally, there was a reduction in Presenilin 1 and Hes-1 expression in the bladder tissues of CPX-POM treated animals. Following the completion of the first-in-human Phase 1 trial (NCT03348514), the pharmacologic activity of fosciclopirox is currently being characterized in a Phase 1 expansion cohort study of muscle-invasive bladder cancer patients scheduled for cystectomy (NCT04608045) as well as a Phase 2 trial of newly diagnosed and recurrent urothelial cancer patients scheduled for transurethral resection of bladder tumors (NCT04525131).Subject terms: Bladder cancer, Pharmacodynamics  相似文献   
518.
The effect of human alpha-calcitonin gene-related peptide (CGRP) on epithelial ion transport was investigated in guinea pig distal colon set up in Ussing flux chambers. Addition of CGRP to the serosal bathing solution evoked a dose-dependent increase in short-circuit current in whole-thickness tissues with intact myenteric and submucosal ganglia, but not in whole-thickness preparations when neural connections between myenteric and submucosal ganglia were severed, nor in sheets of submucosa/mucosa with intact submucosal ganglia. The effects of CGRP were nearly abolished in chloride-free solutions or after treatment with furosemide. Tetrodotoxin and hexamethonium abolished the effects of CGRP on basal short-circuit current whereas atropine did not. CGRP enhanced neurally evoked chloride secretion both in whole thickness and submucosa/mucosa preparations, but the effect in the latter was considerably smaller. These observations suggest that CGRP stimulates chloride secretion primarily by activating myenteric neurons that project either to submucosal ganglia or to the mucosa of the guinea pig distal colon. Furthermore, CGRP appears to have a greater effect on excitability of myenteric neurons than submucosal neurons.  相似文献   
519.
Twenty-nine patients referred consecutively to a cancer clinic because of recurrent metastatic malignant melanoma were given 5 mg of Connaught Laboratories bacillus Calmette-Guérin (BCG) by multiple cutaneous puncture at weekly and later at monthly intervals. Eight were also treated with autologous tumour vaccine and three with intralesional BCG. This group was compared with a retrospective control group of 54 patients treated with surgery and radiotherapy alone after recurrence. Prognostic features such as site of primary and of first metastasis, disease-free interval, age and sex were similar in the two groups. However, the median survival from the time of first recurrence was 12 months in the control group but 21 months in the BCG-treated group. The major improvement was in patients with disease limited to the regional lymph nodes: the median survival was 16 months in the control group but over 32 months in the BCG-treated group. Autologous tumour vaccine appeared to have no effect on survival. Serial testing of immunocompetence did not offer any prognostic advantage, although the results of some tests correleated well with extent of disease.  相似文献   
520.
Many researchers have questioned the ability of biota to adapt to rapid anthropogenic environmental shifts. Here, we synthesize emerging genomic evidence for rapid insect evolution in response to human pressure. These new data reveal diverse genomic mechanisms (single locus, polygenic, structural shifts; introgression) underpinning rapid adaptive responses to a variety of anthropogenic selective pressures. While the effects of some human impacts (e.g. pollution; pesticides) have been previously documented, here we highlight startling new evidence for rapid evolutionary responses to additional anthropogenic processes such as deforestation. These recent findings indicate that diverse insect assemblages can indeed respond dynamically to major anthropogenic evolutionary challenges. Our synthesis also emphasizes the critical roles of genomic architecture, standing variation and gene flow in maintaining future adaptive potential. Broadly, it is clear that genomic approaches are essential for predicting, monitoring and responding to ongoing anthropogenic biodiversity shifts in a fast-changing world.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号