首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   91篇
  免费   29篇
  2021年   2篇
  2014年   3篇
  2013年   5篇
  2012年   4篇
  2011年   4篇
  2008年   2篇
  2007年   1篇
  2006年   2篇
  2004年   2篇
  2003年   1篇
  2002年   3篇
  2001年   5篇
  2000年   3篇
  1998年   2篇
  1997年   3篇
  1996年   4篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1992年   2篇
  1990年   4篇
  1989年   5篇
  1988年   2篇
  1987年   5篇
  1986年   4篇
  1985年   3篇
  1984年   1篇
  1983年   1篇
  1982年   3篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1978年   3篇
  1977年   3篇
  1976年   1篇
  1974年   1篇
  1972年   1篇
  1966年   1篇
  1964年   1篇
  1951年   1篇
  1935年   1篇
  1929年   1篇
  1927年   1篇
  1922年   2篇
  1920年   2篇
  1916年   2篇
  1914年   1篇
  1911年   3篇
  1905年   1篇
  1900年   1篇
排序方式: 共有120条查询结果,搜索用时 17 毫秒
41.
To try and generate broad spectrum human rhinovirus VP1 inhibitors with more attractive physicochemical, DMPK and safety profiles, we explored the current SAR of known VP1 compounds. This lead to the identification of specific structural regions where reduction in polarity can be achieved, so guiding chemistry to analogues with significantly superior profiles to previously reported inhibitors.  相似文献   
42.
Angiosperm resurrection plants exhibit poikilo‐ or homoiochlorophylly as a response to water deficit. Both strategies are generally considered as effective mechanisms to reduce oxidative stress associated with photosynthetic activity under water deficiency. The mechanism of water deficit‐induced chlorophyll (Chl) degradation in resurrection plants is unknown but has previously been suggested to occur as a result of non‐enzymatic photooxidation. We investigated Chl degradation during dehydration in both poikilochlorophyllous (Xerophyta viscosa) and homoiochlorophyllous (Craterostigma pumilum) species. We demonstrate an increase in the abundance of PHEOPHORBIDE a OXYGENASE (PAO), a key enzyme of Chl breakdown, together with an accumulation of phyllobilins, that is, products of PAO‐dependent Chl breakdown, in both species. Phyllobilins and PAO levels diminished again in leaves from rehydrated plants. We conclude that water deficit‐induced poikilochlorophylly occurs via the well‐characterized PAO/phyllobilin pathway of Chl breakdown and that this mechanism also appears conserved in a resurrection species displaying homoiochlorophylly. The roles of the PAO/phyllobilin pathway during different plant developmental processes that involve Chl breakdown, such as leaf senescence and desiccation, fruit ripening and seed maturation, are discussed.  相似文献   
43.
beta-Glycosidase activities present in the human colonic microbiota act on glycosidic plant secondary compounds and xenobiotics entering the colon, with potential health implications for the human host. Information on beta-glycosidases is currently limited to relatively few species of bacteria from the human colonic ecosystem. We therefore screened 40 different bacterial strains that are representative of dominant bacterial groups from human faeces for beta-glucosidase and beta-glucuronidase activity. More than half of the low G+C% Gram-positive firmicutes harboured beta-glucosidase activity, while beta-glucuronidase activity was only found in some firmicutes within clostridial clusters XIVa and IV. Most of the Bifidobacterium spp. and Bacteroides thetaiotaomicron carried beta-glucosidase activity. A beta-glucuronidase gene belonging to family 2 glycosyl hydrolases was detected in 10 of the 40 isolates based on degenerate PCR. These included all nine isolates that gave positive assays for beta-glucuronidase activity, suggesting that the degenerate PCR could provide a useful assay for the capacity to produce beta-glucuronidase in the gut community. beta-Glucuronidase activity was induced by growth on d-glucuronic acid, or by addition of 4-nitrophenol-glucuronide, in Roseburia hominis A2-183, while beta-glucosidase activity was induced by 4-nitrophenol-glucopyranoside. Inducibility varied between strains.  相似文献   
44.
45.
The mean specific biovolumes (biovolume cell−1) of the bacterioplankton within a 250-m-deep water column in Howe Sound, British Columbia, were determined for the period of 4 September 1984 to 23 October 1985. These bacteria had an annual cycle in mean specific biovolume; they were small (ca. 0.058 μm3) in mid-winter, larger in spring (ca. 0.076 μm3), larger again in summer (up to 0.102 μm3), and largest (ca. 0.133 μm3) in early fall (immediately after the decrease in phytoplankton production). The mean specific biovolumes changed coincidently through the water column with time, although the larger bacterioplankton tended to occur in the surface and deepest water. Although the mean specific biovolumes correlated better with in situ temperature (r = 0.65, a = 0.01) than with in situ chlorophyll a concentration (r = 0.34, a = 0.25), modeling experiments with batch cultures of the dinoflagellate Prorocentrum minimum (Pavillard) and the green alga Dunaliella tertiolecta (Butcher) indicated that the biomass and physiological condition of the phytoplankters may be more important than temperature in determining these bacterial specific biovolumes.  相似文献   
46.
Lysophosphatidic acid (LPA) is a lysophospholipid that is produced during thrombin stimulation of platelets, which can promote platelet aggregation. The mechanism of the effect of LPA was explored in normal platelets and in platelets from a patient with a storage pool deficiency (SPD). A comparison with other lysophospholipids showed that only LPA exerted significant effects to cause or potentiate platelet aggregation. Aspirin, an inhibitor of prostaglandin endoperoxide synthetase, had little effect on LPA-induced aggregation, but completely blocked LPA-induced serotonin secretion. LPA also promoted phosphorylation of myosin light chain (MLC), a 47 kilodalton (kDa) protein, and actin-binding protein. Aspirin significantly inhibited the phosphorylation of the 47-kDa and actin-binding proteins at 3-8 min after the addition of LPA, but had no effect on protein phosphorylation within the 1st min and had no significant effect on MLC phosphorylation. In SPD platelets, aspirin partially inhibited both aggregation and phosphorylation of the 47-kDa protein (less than 30% inhibition) and MLC (less than 40% inhibition) at time points of 1 min or less. The addition of ADP to SPD platelets enhanced the LPA response in platelets either pretreated or not pretreated with aspirin. Studies with SPD platelets indicate that thromboxane and secreted ADP contribute to, but are not necessary for, LPA-induced aggregation and phosphorylation. A23187 (a calcium ionophore) and LPA showed some selectivity to promote MLC as opposed to the 47-kDa protein phosphorylation, particularly at low concentrations of agonists and at earlier time points. The protein phosphorylation changes seen are consistent with a role for MLC phosphorylation in the granule centralization promoted with LPA.  相似文献   
47.
Kinetics of Na(+) transport in necturus proximal tubule   总被引:4,自引:4,他引:0       下载免费PDF全文
The dependence of proximal tubular sodium and fluid readsorption on the Na(+) concentration of the luminal and peritubular fluid was studied in the perfused necturus kidney. Fluid droplets, separated by oil from the tubular contents and identical in composition to the vascular perfusate, were introduced into proximal tubules, reaspirated, and analyzed for Na(+) and [(14)C]mannitol. In addition, fluid transport was measured in short-circuited fluid samples by observing the rate of change in length of the split droplets in the tubular lumen. Both reabsorptive fluid and calculated Na fluxes were simple, storable functions of the perfusate Na(+) concentration (K(m) = 35-39 mM/liter, V(max) = 1.37 control value). Intracellular Na(+), determined by tissue analysis, and open-circuit transepithelial electrical potential differences were also saturable functions of extracellular Na(+). In contrast, net reabsorptive fluid and Na(+) fluxes were linearly dependent on intracellular Na(+) and showed no saturation, even at sharply elevated cellular sodium concentrations. These concentrations were achieved by addition of amphotericin B to the luminal perfusate, a maneuver which increased the rate of Na(+) entry into the tubule cells and caused a proportionate rise in net Na(+) flux. It is concluded that active peritubular sodium transport in proximal tubule cells of necturus is normally unsaturated and remains so even after amphotericin-induced enhancement of luminal Na(+) entry. Transepithelial movement of NaCl may be described by a model with a saturable luminal entry step of Na(+) or NaCl into the cell and a second, unsaturated active transport step of Na(+) across the peritubular cell boundary.  相似文献   
48.
49.
Kaposi's sarcoma-associated herpesvirus (KSHV) is associated with Kaposi's sarcoma (KS), primary effusion lymphoma (PEL), and multicentric Castleman's disease. Most KS tumor cells are latently infected with KSHV and are of endothelial origin. While PEL-derived cell lines maintain KSHV indefinitely, all KS tumor-derived cells to date have lost viral genomes upon ex vivo cultivation. To study KSHV latency and tumorigenesis in endothelial cells, we generated telomerase-immortalized human umbilical vein endothelial (TIVE) cells. TIVE cells express all KSHV latent genes 48 h postinfection, and productive lytic replication could be induced by RTA/Orf50. Similar to prior models, infected cultures gradually lost viral episomes. However, we also obtained, for the first time, two endothelial cell lines in which KSHV episomes were maintained indefinitely in the absence of selection. Long-term KSHV maintenance correlated with loss of reactivation in response to RTA/Orf50 and complete oncogenic transformation. Long-term-infected TIVE cells (LTC) grew in soft agar and proliferated under reduced-serum conditions. LTC, but not parental TIVE cells, formed tumors in nude mice. These tumors expressed high levels of the latency-associated nuclear antigen (LANA) and expressed lymphatic endothelial specific antigens as found in KS (LYVE-1). Furthermore, host genes, like those encoding interleukin 6, vascular endothelial growth factor, and basic fibroblast growth factor, known to be highly expressed in KS lesions were also induced in LTC-derived tumors. KSHV-infected LTCs represent the first xenograft model for KS and should be of use to study KS pathogenesis and for the validation of anti-KS drug candidates.  相似文献   
50.
The cyanobacteria Phormidium valderianum, P. tenue and Microcoleus chthonoplastes and the green algae Rhizoclonium fontinale, Ulva intestinalis, Chara zeylanica and Pithophora oedogoniana were exposed to hydrogen tetrachloroaurate solution and were screened for their suitability for producing nano‐gold. All three cyanobacteria genera and two of the green algae (Rhizoclonium fontinale and Ulva intestinalis) produced gold nanoparticles intracellularly, confirmed by purple colouration of the thallus within 72?h of treatment at 20°C. Extracted nanoparticle solutions were examined by UV‐vis spectroscopy, transmission electron microscopy (TEM) and X‐ray diffractometry (XRD). XRD confirmed the reduction of Au (III) to Au (0). UV‐vis spectroscopy and TEM studies indicated the production of nanoparticles having different shapes and sizes. Phormidium valderianum synthesized mostly spherical nanoparticles, along with hexagonal and triangular nanoparticles, at basic and neutral pHs (pH 9 and pH 7, respectively). Medicinally important gold nanorods were synthesized (together with gold nanospheres) only by P. valderianum at acidic pH (pH 5); this was initially determined by two surface plasmon bands in UV‐vis spectroscopy and later confirmed by TEM. Spherical to somewhat irregular particles were produced by P. tenue and Ulva intestinalis (TEM studies). The UV‐vis spectroscopy of the supernatant of other algal extracts indicated the formation of mostly spherical particles. Production of gold nanoparticles by algae is more ecofriendly than purely chemical synthesis. However, the choice of algae is important: Chara zeylanica and Pithophora oedogoniana were found to be unable to produce nanoparticles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号