首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   519篇
  免费   62篇
  国内免费   1篇
  2022年   5篇
  2021年   4篇
  2020年   3篇
  2019年   7篇
  2018年   8篇
  2017年   10篇
  2016年   9篇
  2015年   22篇
  2014年   11篇
  2013年   25篇
  2012年   33篇
  2011年   31篇
  2010年   15篇
  2009年   17篇
  2008年   17篇
  2007年   21篇
  2006年   26篇
  2005年   20篇
  2004年   9篇
  2003年   18篇
  2002年   17篇
  2001年   20篇
  2000年   16篇
  1999年   20篇
  1998年   13篇
  1997年   8篇
  1996年   9篇
  1995年   3篇
  1994年   5篇
  1993年   5篇
  1992年   7篇
  1991年   11篇
  1990年   9篇
  1989年   10篇
  1988年   9篇
  1987年   4篇
  1986年   10篇
  1985年   11篇
  1984年   4篇
  1982年   8篇
  1981年   4篇
  1980年   5篇
  1979年   7篇
  1977年   6篇
  1976年   3篇
  1974年   3篇
  1972年   3篇
  1969年   9篇
  1968年   4篇
  1907年   4篇
排序方式: 共有582条查询结果,搜索用时 31 毫秒
41.
In an attempt to generate new platinum compounds that may be effective in the treatment of cancer, as well as having a lower toxicity than traditional platins and being orally viable, we are studing the synthesis and reactivity of platinum complexes of tetraazamacrocycles bearing carboxylato pendant arms. We have synthesized adducts of meso- and rac-5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane-1,7-diacetic acid (L(1)H(2)). The meso-Pt(II)L(1) complex is unstable with respect to disproportionation, forming platinum metal and [meso-Pt(IV)L(1)](2+). The rac-isomer shows less tendency to disproportionate. Cyclic voltammetry suggests that the rac-Pt(II)L(1) complex undergoes two one-electron oxidations. Using bis-triazacyclononanenickel(III), [Ni(III)(tacn)(2)](3+) as an outer-sphere oxidant, the self-exchange rate for the [Pt(II/III)L](0/+) couple has been estimated at 0.034 M(-1) s(-1).  相似文献   
42.
Transdominant genetic selections can yield protein fragment and peptide modulators of specific biochemical pathways. In yeast, such screens have been highly successful in targeting the MAP (mitogen-activated protein) kinase growth-control pathway. We performed a similar type of selection aimed at recovery of modulators of the mammalian MAP kinase cascade. Two pathway activators were identified, fragments of the TrkB and Raf-1 kinases. In a second selection directed at the beta-catenin growth-control pathway, three different clones encoding cadherin fragments were recovered. In neither selection were peptide inhibitors observed. We conclude that some transdominant selections in mammalian cells can readily yield high-penetrance protein fragments, but may be less amenable to isolation of peptide inhibitors.  相似文献   
43.
The structure of the I domain of integrin alpha L beta 2 bound to the Ig superfamily ligand ICAM-1 reveals the open ligand binding conformation and the first example of an integrin-IgSF interface. The I domain Mg2+ directly coordinates Glu-34 of ICAM-1, and a dramatic swing of I domain residue Glu-241 enables a critical salt bridge. Liganded and unliganded structures for both high- and intermediate-affinity mutant I domains reveal that ligand binding can induce conformational change in the alpha L I domain and that allosteric signals can convert the closed conformation to intermediate or open conformations without ligand binding. Pulling down on the C-terminal alpha 7 helix with introduced disulfide bonds ratchets the beta 6-alpha 7 loop into three different positions in the closed, intermediate, and open conformations, with a progressive increase in affinity.  相似文献   
44.
A series of experiments reported in the literature using fluxomics as an efficient functional genomics tool revealed that the L-lysine production of the Corynebacterium glutamicum strain MH20-22B correlates with the extent of intracellular NADPH supply. Some alternative metabolic engineering strategies to increase intracellular NADPH supply in the C. glutamicum strain DSM5715 were considered and finally the redirection of carbon flux through the pentose phosphate pathway with two NADPH generating enzymatic reactions was favored. Elsewhere, the construction of a phosphoglucose isomerase (Pgi) null mutant of the C. glutamicum strain DSM5715 has been described by utilizing genetic engineering as well as some aspects of its metabolic phenotype. Most interestingly, it was shown that not only could the L-lysine formation be increased by 1.7-fold but the by-product concentration for the null mutant strain was also able to be drastically reduced. In this publication we discuss this metabolic phenotype in detail and present additional data on by-product formation as well as yield considerations. Results from isotope based metabolic flux analysis in combination with considerations on NADPH metabolism clearly exclude the existence of Pgi isoenzymes in C. glutamicum strain DSM5715. The genome region containing the pgi gene was analyzed. It cannot be excluded that polar effects might have been caused by the disruption of the pgi gene and might have contributed to the observed metabolic phenotype of C. glutamicum Pgi mutants. We illustrate growth characteristics of a Pgi mutant of an industrial L-lysine production strain. A reduced growth rate and a biphasic growth behavior was observed. The importance of NADPH reoxidation for well balanced growth in Pgi mutants is discussed. Another phosphoglucose isomerase mutant of C. glutamicum has been described in literature with which an increase in L-lysine yield from 42 to 52% was observed. This finding highlights the general potential of metabolic flux redirection towards the pentose phosphate pathway, which could be used for metabolic engineering of the biotechnological synthesis of (1) aromatic amino acids and (2) chemicals whose synthesis depends on intracellular NADPH supply.  相似文献   
45.
46.
An in vitro model was used to determine the effect of superpulsed CO2 laser energy on normal dermal and keloid-producing fibroblast proliferation and release of growth factors. Growth factors assayed included basic fibroblast growth factor (bFGF) and transforming growth factor beta1 (TGF-beta1). bFGF is mitogenic, inhibits collagen production, and stabilizes cellular phenotype. TGF-beta1 stimulates growth and collagen secretion and is thought to be integral to keloid formation. Growth in a serum-free medium allowed measurement of these growth factors without confounding variables. Keloid and normal dermal fibroblasts cell lines were established from facial skin samples using standard explant techniques. Samples consisted of three separate keloid and three separate normal dermal fibroblast cell lines. Cells were used at passage 4 to seed 24-well trays at a concentration of 6 x 10(4) cells per milliliter in serum-free medium. At 48 hours, 18.8 percent of each cell well was exposed to a fluence of 2.4, 4.7, and 7.3 J/cm2 using the superpulsed CO2 laser. Cell viability and counts were established at four time points: 0 (time of superpulsed CO2 laser treatment), 24, 72, and 120 hours. Supernatants were collected and assessed for bFGF and TGF-beta1 using a sandwich enzyme immunoassay. All cell lines demonstrated logarithmic growth through 120 hours (conclusion of experiment), with a statistically significant shorter population doubling time for keloid fibroblasts (p < 0.05). Use of the superpulsed CO2 laser shortened population doubling times relative to that of controls; the differences were statistically significant in keloid dermal fibroblasts when fluences of 2.4 and 4.7 J/cm2 were used (p < 0.05 and 0.01, respectively). bFGF was present in greater levels in normal dermal fibroblasts than in keloid dermal fibroblasts. Application of superpulsed CO2 demonstrated a trend toward increased bFGF secretion in both fibroblast types; the increase was significant in the keloid group at 4.7J/cm2. A consistent trend in suppression of TGF-beta1 was seen in both groups exposed to superpulsed CO2, with the maximal effect occurring at 4.7 J/cm2. Serum-free culture sustains logarithmic cell growth and allows growth factor measurement without confounding variables from serum-containing media. Superpulsed CO2 enhances fibroblast replication and seems to stimulate bFGF secretion and to inhibit TGF-beta1 secretion. Given the function of these growth factors, the application of superpulsed CO2 may support normalized wound healing. These findings may explain the beneficial effects of laser resurfacing on a cellular level and support the use of superpulsed CO2 in the management of keloid scar tissue.  相似文献   
47.
Lymphangiomyomatosis (LAM) is a rare disease, of unknown etiology, affecting women almost exclusively. Lung transplantation is the only consistently effective therapy for LAM. Microscopically, LAM consists of a diffuse proliferation of smooth muscle cells. LAM can occur without evidence of other disease (referred to as "sporadic LAM") or in association with tuberous sclerosis complex (TSC). TSC is an autosomal dominant tumor suppressor gene syndrome characterized by seizures, mental retardation, and tumors in the brain, heart, skin, and kidney. Renal angiomyolipomas occur in approximately 50% of sporadic LAM patients and in 70% of TSC patients. Loss of heterozygosity (LOH) in the chromosomal region for the TSC2 gene occurs in 60% of TSC-associated angiomyolipomas. Because of the similar pulmonary and renal manifestations of TSC and sporadic LAM, we hypothesized that LAM and TSC have a common genetic basis. We analyzed renal angiomyolipomas, from 13 women with sporadic LAM, for LOH in the regions of the TSC1 (chromosome 9q34) and TSC2 (chromosome 16p13) genes. TSC2 LOH was detected in seven (54%) of the angiomyolipomas. We also found TSC2 LOH in four lymph nodes from a woman with retroperitoneal LAM. No TSC1 LOH was found. Our findings indicate that the TSC2 gene may be involved in the pathogenesis of sporadic LAM. However, genetic transmission of LAM has not been reported. Women with LAM may have low-penetrance germ-line TSC2 mutations, or they may be mosaic, with TSC2 mutations in the lung and the kidney but not in other organs.  相似文献   
48.
49.
Valve interstitial cells (VICs) are fibroblastic in nature however in culture it is widely accepted that they differentiate into a myofibroblastic phenotype. This study assessed a fibroblast culture media formulation for its ability to maintain the phenotype and function of VICs as in the intact healthy valve. Normal human VICs were cultured separately in standard DMEM and in fibroblast media consisting of FGF2 (10ng/ml), insulin (50ng/ml) and 2% FCS for at least a week. Cell morphology, aspect ratio, size, levels and distribution of protein expression, proliferation, cell cycle, contraction and migration were assessed. Some VICs and some valve endothelial cells expressed FGF2 in valve tissue and this expression was increased in calcified valves. VICs in DMEM exhibited large, spread cells whereas VICs in fibroblast media were smaller, elongated and spindly. Aspect ratio and size were both significantly higher in DMEM (p<0.01). The level of expression of α-SMA was significantly reduced in fibroblast media at day 2 after isolation (p<0.01) and the expression of α-SMA, SM22 and EDA-fibronectin was significantly reduced in fibroblast media at days 7 and 12 post-isolation (p<0.01). Expression of cytoskeletal proteins, bone marker proteins and extracellular matrix proteins was reduced in fibroblast media. Proliferation of VICs in fibroblast media was significantly reduced at weeks 1 (p<0.05) and 2 (p<0.01). Collagen gel contraction was significantly reduced in fibroblast media (p<0.05). VICs were found to have significantly fewer and smaller focal adhesions in fibroblast media (p<0.01) with significantly fewer supermature focal adhesions in fibroblast media (p<0.001). Ultrastructurally, VICs in fibroblast media resembled native VICs from intact valves. VICs in fibroblast media demonstrated a slower migratory ability after wounding at 72 hours (p<0.01). Treatment of human VICs with this fibroblast media formulation has the ability to maintain and to dedifferentiate the VICs back to a fibroblastic phenotype with phenotypic and functional characteristics ascribed to cells in the intact valve. This methodology is fundamental in the study of normal valve biology, pathology and in the field of tissue engineering.  相似文献   
50.
Bacterial nitroreductases (NTRs) have been widely utilized in the development of novel antibiotics, degradation of pollutants, and gene-directed enzyme prodrug therapy (GDEPT) of cancer that reached clinical trials. In case of GDEPT, since NTR is not naturally present in mammalian cells, the prodrug is activated selectively in NTR-transformed cancer cells, allowing high efficiency treatment of tumors. Currently, no bioluminescent probes exist for sensitive, non-invasive imaging of NTR expression. We therefore developed a "NTR caged luciferin" (NCL) probe that is selectively reduced by NTR, producing light proportional to the NTR activity. Here we report successful application of this probe for imaging of NTR in vitro, in bacteria and cancer cells, as well as in vivo in mouse models of bacterial infection and NTR-expressing tumor xenografts. This novel tool should significantly accelerate the development of cancer therapy approaches based on GDEPT and other fields where NTR expression is important.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号