首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   102篇
  免费   16篇
  2022年   1篇
  2021年   2篇
  2019年   2篇
  2018年   1篇
  2015年   5篇
  2014年   2篇
  2013年   3篇
  2012年   4篇
  2011年   4篇
  2010年   1篇
  2009年   5篇
  2008年   2篇
  2007年   4篇
  2006年   3篇
  2005年   3篇
  2004年   5篇
  2002年   1篇
  2001年   2篇
  2000年   4篇
  1999年   5篇
  1998年   3篇
  1997年   5篇
  1996年   2篇
  1995年   2篇
  1994年   4篇
  1993年   1篇
  1992年   4篇
  1991年   1篇
  1990年   3篇
  1989年   9篇
  1988年   1篇
  1986年   5篇
  1985年   2篇
  1983年   1篇
  1981年   2篇
  1979年   1篇
  1978年   1篇
  1977年   3篇
  1976年   1篇
  1975年   2篇
  1970年   2篇
  1935年   1篇
  1931年   1篇
  1929年   2篇
排序方式: 共有118条查询结果,搜索用时 984 毫秒
51.
McCool JD  Ford CC  Sandler SJ 《Genetics》2004,167(2):569-578
The ability to repair damaged replication forks and restart them is important for cell survival. DnaT is essential for replication restart in vitro and yet no definite genetic analysis has been done in Escherichia coli K-12. To begin, dnaT822, an in-frame six-codon (87-92) deletion was constructed. DnaT822 mutants show colony size, cell morphology, inability to properly partition nucleoids, UV sensitivity, and basal SOS expression similar to priA2::kan mutants. DnaT822 priA2::kan double mutants had phenotypes similar to those of the single mutants. DnaT822 and dnaT822 priA2::kan mutant phenotypes were fully suppressed by dnaC809. Previously, a dominant temperature-sensitive lethal mutation, dnaT1, had been isolated in E. coli 15T(-). DnaT1 was found to have a base-pair change relative to the E. coli 15T(-) and E. coli K-12 dnaT genes that led to a single amino acid change: R152C. A plasmid-encoded E. coli K-12 mutant dnaT gene with the R152C amino acid substitution did not display a dominant temperature-sensitive lethal phenotype in a dnaT(+) strain of E. coli K-12. Instead, this mutant dnaT gene was found to complement the E. coli K-12 dnaT822 mutant phenotypes. The significance of these results is discussed in terms of models for replication restart.  相似文献   
52.
E Houben  de Gier JW    van Wijk KJ 《The Plant cell》1999,11(8):1553-1564
The mechanisms of targeting and insertion of chloroplast-encoded thylakoid membrane proteins are poorly understood. In this study, we have used a translation system isolated from chloroplasts to begin to investigate these mechanisms. The bacterial membrane protein leader peptidase (Lep) was used as a model protein because its targeting and insertion mechanisms are well understood for Escherichia coli and for the endoplasmic reticulum. Lep could thus provide insight into the functional homologies between the different membrane systems. Lep was efficiently expressed in the chloroplast translation system, and the protein could be inserted into thylakoid membranes with the same topology as in E. coli cytoplasmic membranes, following the positive-inside rule. Insertion of Lep into the thylakoid membrane was stimulated by the trans-thylakoid proton gradient and was strongly inhibited by azide, suggesting a requirement for SecA activity. Insertion most likely occurred in a cotranslational manner, because insertion could only be observed if thylakoid membranes were present during translation reactions but not when thylakoid membranes were added after translation reactions were terminated. To halt the elongation process at different stages, we translated truncated Lep mRNAs without a stop codon, resulting in the formation of stable ribosome nascent chain complexes. These complexes showed a strong, salt-resistant affinity for the thylakoid membrane, implying a functional interaction of the ribosome with the membrane and supporting a cotranslational insertion mechanism for Lep. Our study supports a functional homology for the insertion of Lep into the thylakoid membrane and the E. coli cytoplasmic membrane.  相似文献   
53.
Earlier immunolocalization experiments showed that the extreme cationic C-terminus of the rat intestinal mucin Muc2 (RMC) was present at the base of intestinal goblet cells in the vicinity of ER and golgi compartments, but was not found with the rest of the mucin in apical storage granules. This prompted us to investigate the possibility that an early proteolytic cleavage reaction occurs post-translationally. A plasmid pRMC, encoding the C-terminal 534 amino acids of the mucin, was expressed in COS-7 cells and was shown to undergo cleavage at an R-T-R-R sequence located within the C-terminal 14 amino acids. Cleavage did not occur with the construct RMCfH, a furin site-mutated (A-T-A-A) counterpart of pRMCH (poly His6 tagged RMC). Addition of a furin inhibitor to COS-7 cell incubations also prevented cleavage of RMC and RMCH products. 35S pulse-chase kinetic experiments revealed that a truncated mutant lacking the C-terminal 14 amino acids (pRMCDeltaCT) forms faulty (doublet) dimers in the ER. These were not secreted as efficiently as the normal dimer of wild-type (pRMC) constructs. Thus the cationic C-terminus of rMuc2 apppears to facilitate the correct formation of normal Muc2 domain dimers.  相似文献   
54.
55.
We examined the effect of carrageenan on in vitro antibody-dependent cell-mediated cytolysis (ADCC) and spontaneous cell-mediated cytolysis (SCMC) in cultures of human peripheral blood mononuclear cells (PBL). Carrageenan, when present in the assay, nonspecifically reduced ADCC and SCMC against both Chang and chicken erythrocyte (CRBC) target cells. This reduction in cytotoxicity could not be attributed entirely to the macrophage toxic and complement-inhibitory properties of carrageenan because neither removal of complement nor macrophage depletion prevented the dose-dependent inhibition. In contrast, pretreatment of effector PBL, with carrageenan followed by removal of Carrageenan by washing did not alter ADCC or SCMC against Chang cells, which are mediated by nonphagocytic cells, but reduced both ADCC and SCMC activity against CRBC targets, which are mediated in part by macrophages. Thus, Carrageenan, when present in in vitro cell-mediated cytotoxicity assays, causes a nonspecific impairment of cytotoxicity that is independent of its anticomplement or macrophage-toxic properties.  相似文献   
56.
57.
Consistency in gold chloride staining is essential for anatomical analysis of sensory nerve endings. The gold chloride stain for this purpose has been modified by many investigators, but often yields inconsistent staining, which makes it difficult to differentiate structures and to determine nerve ending distribution in large tissue samples. We introduce additional steps and major changes to the modified Gairns’ protocol. We controlled the temperature and mixing rate during tissue staining to achieve consistent staining and complete solution penetration. We subjected samples to sucrose dehydration to improve cutting efficiency. We then exposed samples to a solution containing lemon juice, formic acid and paraformaldehyde to produce optimal tissue transparency with minimal tissue deformity. We extended the time for gold chloride impregnation 1.5 fold. Gold chloride was reduced in the labrum using 25% formic acid in water for 18 h and in the capsule using 25% formic acid in citrate phosphate buffer for 2 h. Citrate binds gold nanoparticles, which minimizes aggregation in the tissue. We stored samples in fresh ultrapure water at 4° C to slow reduction and to maintain color contrast in the tissue. Tissue samples were embedded in Tissue Tek and sectioned at 80 and 100 μm instead of using glycerin and teasing the tissue apart as in Gairns’ modified gold chloride method. We attached sections directly to gelatin subbed slides after sectioning with a cryostat. The slides then were processed and coverslipped with Permount. Staining consistency was demonstrated throughout the tissue sections and neural structures were clearly identifiable.  相似文献   
58.
59.
60.
We report development of a genetic system for making targeted gene knockouts in Clostridium thermocellum, a thermophilic anaerobic bacterium that rapidly solubilizes cellulose. A toxic uracil analog, 5-fluoroorotic acid (5-FOA), was used to select for deletion of the pyrF gene. The ΔpyrF strain is a uracil auxotroph that could be restored to a prototroph via ectopic expression of pyrF from a plasmid, providing a positive genetic selection. Furthermore, 5-FOA was used to select against plasmid-expressed pyrF, creating a negative selection for plasmid loss. This technology was used to delete a gene involved in organic acid production, namely pta, which encodes the enzyme phosphotransacetylase. The C. thermocellum Δpta strain did not produce acetate. These results are the first examples of targeted homologous recombination and metabolic engineering in C. thermocellum, a microbe that holds an exciting and promising future in the biofuel industry and development of sustainable energy resources.Conversion of cellulosic biomass using saccharolytic fermentative microorganisms without the addition of purified cellulase and hemicellulase enzymes is a promising approach for low-cost production of renewable fuels and chemicals (22, 23). Thermophilic, cellulolytic bacteria are one departure point for development of microorganisms with the requisite capabilities for such consolidated bioprocessing (CBP), with Clostridium thermocellum being exemplary in this regard. As reviewed elsewhere (6, 22), C. thermocellum is a Gram-positive organism able to ferment cellulose and products of cellulose solubilization to ethanol, acetic acid, lactic acid, formic acid, hydrogen, and CO2. C. thermocellum appears to be a cellulose-utilizing specialist (6, 8) and produces a multienzyme cellulose-solubilizing complex termed a cellulosome (2, 3, 9).Metabolic engineering is required in order to increase the yield of ethanol or other desired products from mixed-product fermentation, such as that carried out by Clostridium thermocellum. Comprehensive work directed to this end has been carried out with genetically tractable organisms, such as Escherichia coli, resulting in high or near-theoretical yields achieved for ethanol (35, 36), other native products (21, 25), and nonnative products (7, 12). In these organisms, genetic systems involving both positive and negative selection markers have been employed in order to facilitate reuse of the same marker and to develop marker-free strains. One prominent system in the category involves use of the gene encoding the enzyme orotidine 5-phosphate decarboxylase (PyrF) (4, 11, 20, 27-29, 39). PyrF participates in de novo pyrimidine biosynthesis but is also a target for the antimetabolite 5-fluoroorotic acid (5-FOA) (4). Thus, cells lacking pyrF are uracil auxotrophs and resistant to 5-FOA, creating an opportunity whereby ectopic expression of pyrF can be selected or counterselected (4).Reliable genetic tractability has been elusive for Clostridium species. Prior to this report, the only Clostridia species in which gene deletion via homologous recombination has been demonstrated are Clostridium acetobutylicum, Clostridium perfringens, and Clostridium septicum. In the first organism, the use of a replicating plasmid for transformation followed by selection and screening for plasmid segregation resulted in a single clone that when analyzed contained a disruption in the gene of interest but not by the expected recombination events (13). The last two organisms have either an unusually high transformation frequency or feasibility for acquiring DNA from E. coli via conjugation, allowing the use of suicide plasmids (1, 16, 19). By comparison, the recently reported method of C. thermocellum transformation consists of a complex and cumbersome electroporation protocol using a custom pulse delivery system (37, 38). In our hands, efficiency of the C. thermocellum electrotransformation system does not compare with that of typical model organisms and does not enable the use of nonreplicating plasmids as a means of gene manipulation. Alternatively, group II intron technology has been used to inactivate gene targets in clostridia that were previously characterized as genetically intractable, but systems described to date have a temperature restriction that make such approaches incompatible with thermophilic clostridia (14, 15, 34).The only C. thermocellum mutant characterized genetically was isolated following a random mutagenesis and enrichment for cells that did not adhere to cellulose (43). The random mutagenesis approach is limited, in the sense that it does not lend itself well to reverse genetics, as many desired mutations lack selectable or screenable phenotypes. For instance, attempts have been made, with little success, to isolate saccharolytic thermophiles containing lesions in the pta-ack operon responsible for acetate production by selective enrichment using antimetabolites (26). In contrast, the creation of a Thermoanaerobacterium saccharolyticum Δpta-ack strain has been achieved using selectable markers that serve as a proxy for the events leading to targeted gene deletion (32). Motivated by the potential of microbial cellulose processing and the attributes of C. thermocellum, we undertook to develop a gene deletion system based on the pyrF gene.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号