首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   179篇
  免费   24篇
  2021年   2篇
  2019年   2篇
  2017年   6篇
  2015年   3篇
  2014年   9篇
  2013年   6篇
  2012年   11篇
  2011年   10篇
  2010年   6篇
  2009年   6篇
  2008年   7篇
  2007年   8篇
  2006年   6篇
  2005年   6篇
  2004年   5篇
  2003年   4篇
  2002年   11篇
  2001年   2篇
  2000年   8篇
  1999年   2篇
  1998年   9篇
  1997年   2篇
  1996年   4篇
  1995年   2篇
  1994年   1篇
  1992年   4篇
  1991年   2篇
  1990年   4篇
  1989年   5篇
  1988年   1篇
  1987年   2篇
  1986年   2篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1981年   5篇
  1980年   3篇
  1979年   3篇
  1978年   3篇
  1977年   5篇
  1976年   4篇
  1975年   3篇
  1974年   1篇
  1972年   1篇
  1971年   2篇
  1970年   2篇
  1969年   2篇
  1966年   1篇
  1965年   1篇
  1954年   1篇
排序方式: 共有203条查询结果,搜索用时 203 毫秒
101.
Bacterial infection a leading cause of death among patients with stroke, with elderly patients often presenting with more debilitating outcomes. The findings from our retrospective study, supported by previous clinical reports, showed that increasing age is an early predictor for developing fatal infectious complications after stroke. However, exactly how and why older individuals are more susceptible to infection after stroke remains unclear. Using a mouse model of transient ischaemic stroke, we demonstrate that older mice (>12 months) present with greater spontaneous bacterial lung infections compared to their younger counterparts (7–10 weeks) after stroke. Importantly, we provide evidence that older poststroke mice exhibited elevated intestinal inflammation and disruption in gut barriers critical in maintaining colonic integrity following stroke, including reduced expression of mucin and tight junction proteins. In addition, our data support the notion that the localized pro‐inflammatory microenvironment driven by increased tumour necrosis factor‐α production in the colon of older mice facilitates the translocation and dissemination of orally inoculated bacteria to the lung following stroke onset. Therefore, findings of this study demonstrate that exacerbated dysfunction of the intestinal barrier in advanced age promotes translocation of gut‐derived bacteria and contributes to the increased risk to poststroke bacterial infection.  相似文献   
102.
There is little research investigating relationships between the Functional Movement Screen (FMS) and athletic performance in female athletes. This study analyzed the relationships between FMS (deep squat; hurdle step [HS]; in-line lunge [ILL]; shoulder mobility; active straight-leg raise [ASLR]; trunk stability push-up; rotary stability) scores, and performance tests (bilateral and unilateral sit-and-reach [flexibility]; 20-m sprint [linear speed]; 505 with turns from each leg; modified T-test with movement to left and right [change-of-direction speed]; bilateral and unilateral vertical and standing broad jumps; lateral jumps [leg power]). Nine healthy female recreational team sport athletes (age = 22.67 ± 5.12 years; height = 1.66 ± 0.05 m; body mass = 64.22 ± 4.44 kilograms) were screened in the FMS and completed the afore-mentioned tests. Percentage between-leg differences in unilateral sit-and-reach, 505 turns and the jumps, and difference between the T-test conditions, were also calculated. Spearman''s correlations (p ≤ 0.05) examined relationships between the FMS and performance tests. Stepwise multiple regressions (p ≤ 0.05) were conducted for the performance tests to determine FMS predictors. Unilateral sit-and-reach positive correlated with the left-leg ASLR (r = 0.704-0.725). However, higher-scoring HS, ILL, and ASLR related to poorer 505 and T-test performance (r = 0.722-0.829). A higher-scored left-leg ASLR related to a poorer unilateral vertical and standing broad jump, which were the only significant relationships for jump performance. Predictive data tended to confirm the correlations. The results suggest limitations in using the FMS to identify movement deficiencies that could negatively impact athletic performance in female team sport athletes.  相似文献   
103.
With the completion of sequencing projects for several parasite genomes, efforts are ongoing to make sense of this mass of information in terms of the gene products encoded and their interactions in the growth, development and survival of parasites. The emerging science of systems biology aims to explain the complex relationship between genotype and phenotype by using network models. One area in which this approach has been particularly successful is in the modeling of metabolism. With an accurate picture of the set of metabolic reactions encoded in a genome, it is now possible to identify enzymes or transporters that might be viable targets for new drugs. Because these predictions greatly depend on the quality and completeness of the genome annotation, there are substantial efforts in the scientific community to increase the numbers of metabolic enzymes identified. In this review, we discuss the opportunities for using metabolic reconstruction and analysis tools in parasitology research, and their applications to protozoan parasites.  相似文献   
104.
105.
106.
Extracellular pathogenesis-related proteins, including glucanases, are expressed at cold temperatures in winter rye (Secale cereale) and display antifreeze activity. We have characterized recombinant cold-induced glucanases from winter rye to further examine their roles and contributions to cold tolerance. Both basic beta-1,3-glucanases and an acidic beta-1,3;1,4-glucanase were expressed in Escherichia coli, purified, and assayed for their hydrolytic and antifreeze activities in vitro. All were found to be cold active and to retain partial hydrolytic activity at subzero temperatures (e.g. 14%-35% at -4 degrees C). The two types of glucanases had antifreeze activity as measured by their ability to modify the growth of ice crystals. Structural models for the winter rye beta-1,3-glucanases were developed on which putative ice-binding surfaces (IBSs) were identified. Residues on the putative IBSs were charge conserved for each of the expressed glucanases, with the exception of one beta-1,3-glucanase recovered from nonacclimated winter rye in which a charged amino acid was present on the putative IBS. This protein also had a reduced antifreeze activity relative to the other expressed glucanases. These results support the hypothesis that winter rye glucanases have evolved to inhibit the formation of large, potentially fatal ice crystals, in addition to having enzymatic activity with a potential role in resisting infection by psychrophilic pathogens. Glucanases of winter rye provide an interesting example of protein evolution and adaptation aimed to combat cold and freezing conditions.  相似文献   
107.
The de novo molecular design program SPROUT has been applied to the X-ray crystal structures of Plasmodium and human dihydroorotate dehydrogenase, respectively. The resulting design templates were used to prepare a series of molecules which, in keeping with predictions, showed useful levels of species-selective enzyme inhibition.  相似文献   
108.
109.
Tetrahymena pyriformis 60-S ribosomal subunits treated with EDTA release a 7-S particle containing 5-S RNA and a 36000-Mr protein that is similar to mammalian 5-S-RNA-binding protein L5 in molecular weight, in two-dimensional acrylamide gel mobility, and in peptide pattern as generated by a simple, one-dimensional acrylamide gel technique. Human and T. pyriformis 40-S ribosomal subunits, treated with buffers lacking magnesium or containing EDTA, release varying amounts of two large acidic proteins. We have identified these released proteins by two-dimensional gel electrophoresis.  相似文献   
110.
A protease from Tetrahymena pyriformis inactivated eight of nine commercially available enzymes tested, including lactate deyhdrogenase, isocitrate dehydrogenase (TPN-specific), glucose-6 phosphate dehydrogenase, D-amino acid oxidase, fumarase, pyruvate kinase, hexokinase, and citrate synthase. Urate oxidase was not inactivated. Inactivation occurred at neutral pH, was prevented by inhibitors of the protease, and followed first order kinetics. In those cases tested, inactivation was enhanced by mercaptoethanol. Most of the enzyme-inactivating activity was due to a protease of molecular weight 25,000 that eluted from DEAE-Sephadex at 0.3 M KCl. A second protease of this molecular weight, which was not retained by the gel, inactivated only isocitrate dehydrogenase and D-amino acid oxidase. These two proteases could also be distinguished by temperature and inhibitor sensitivity. Two other protease peaks obtained by DEAE-Sephadex chromatography had little or no no enzyme inactivating activity, while another attacked only D-amino acid oxidase. At least six of the enzymes could be protected from proteolytic inactivation by various ligands. Isocitrates dehydrogenase was protected by isocitrate, TPN, or TPNH, glucose-6-dehydrogenase by glucose-6-P or TPN, pyruvate kinase by phosphoenolypyruvate or ADP, hexokinase by glucose, and fumarase by a mixture of fumarate and malate. Lactate dehdrogenase was not protected by either of its substrates of coenzymes. Citrate synthase was probably protected by oxalacetate. Our data suggest that the protease or proteases discussed here may participate in the inactivation or degradation of a least some enzymes in Tetrahymena. Since the inactivation occurs at neutral pH, this process could be regulated by variations in the cellular levels of substrates, coenzymes, or allosteric regulators resulting form changes in growth conditions or growth state. Such a mechanism would permit the selective retention of enzymes of metabolically active pathways.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号