全文获取类型
收费全文 | 160篇 |
免费 | 16篇 |
专业分类
176篇 |
出版年
2022年 | 1篇 |
2021年 | 2篇 |
2020年 | 2篇 |
2018年 | 2篇 |
2017年 | 1篇 |
2016年 | 3篇 |
2015年 | 2篇 |
2014年 | 3篇 |
2013年 | 7篇 |
2012年 | 8篇 |
2011年 | 10篇 |
2010年 | 8篇 |
2009年 | 8篇 |
2008年 | 9篇 |
2007年 | 4篇 |
2006年 | 2篇 |
2005年 | 4篇 |
2004年 | 6篇 |
2003年 | 6篇 |
2002年 | 4篇 |
2001年 | 9篇 |
2000年 | 8篇 |
1999年 | 5篇 |
1998年 | 3篇 |
1997年 | 3篇 |
1996年 | 4篇 |
1994年 | 4篇 |
1992年 | 1篇 |
1991年 | 1篇 |
1990年 | 5篇 |
1989年 | 4篇 |
1988年 | 3篇 |
1987年 | 4篇 |
1986年 | 4篇 |
1985年 | 2篇 |
1984年 | 1篇 |
1983年 | 4篇 |
1982年 | 3篇 |
1981年 | 1篇 |
1980年 | 2篇 |
1979年 | 2篇 |
1978年 | 2篇 |
1977年 | 2篇 |
1975年 | 1篇 |
1974年 | 1篇 |
1973年 | 3篇 |
1969年 | 2篇 |
排序方式: 共有176条查询结果,搜索用时 15 毫秒
81.
82.
Small BG McColl BW Allmendinger R Pahle J López-Castejón G Rothwell NJ Knowles J Mendes P Brough D Kell DB 《Nature chemical biology》2011,7(12):902-908
The control of biochemical fluxes is distributed, and to perturb complex intracellular networks effectively it is often necessary to modulate several steps simultaneously. However, the number of possible permutations leads to a combinatorial explosion in the number of experiments that would have to be performed in a complete analysis. We used a multiobjective evolutionary algorithm to optimize reagent combinations from a dynamic chemical library of 33 compounds with established or predicted targets in the regulatory network controlling IL-1β expression. The evolutionary algorithm converged on excellent solutions within 11 generations, during which we studied just 550 combinations out of the potential search space of ~9 billion. The top five reagents with the greatest contribution to combinatorial effects throughout the evolutionary algorithm were then optimized pairwise. A p38 MAPK inhibitor together with either an inhibitor of IκB kinase or a chelator of poorly liganded iron yielded synergistic inhibition of macrophage IL-1β expression. Evolutionary searches provide a powerful and general approach to the discovery of new combinations of pharmacological agents with therapeutic indices potentially greater than those of single drugs. 相似文献
83.
E F Greenberg K S McColl F Zhong G Wildey A Dowlati C W Distelhorst 《Cell death & disease》2015,6(12):e2034
Small cell lung cancer (SCLC) has an annual mortality approaching that of breast and prostate cancer. Although sensitive to initial chemotherapy, SCLC rapidly develops resistance, leading to less effective second-line therapies. SCLC cells often overexpress Bcl-2, which protects cells from apoptosis both by sequestering pro-apoptotic family members and by modulating inositol 1,4,5-trisphosphate receptor (IP3R)-mediated calcium signaling. BH3-mimetic agents such as ABT-263 disrupt the former activity but have limited activity in SCLC patients. Here we report for the first time that Bcl-2-IP3 receptor disruptor-2 (BIRD-2), a decoy peptide that binds to the BH4 domain of Bcl-2 and prevents Bcl-2 interaction with IP3Rs, induces cell death in a wide range of SCLC lines, including ABT-263-resistant lines. BIRD-2-induced death of SCLC cells appears to be a form of caspase-independent apoptosis mediated by calpain activation. By targeting different regions of the Bcl-2 protein and different mechanisms of action, BIRD-2 and ABT-263 induce cell death synergistically. Based on these findings, we propose that targeting the Bcl-2–IP3R interaction be pursued as a novel therapeutic strategy for SCLC, either by developing BIRD-2 itself as a therapeutic agent or by developing small-molecule inhibitors that mimic BIRD-2.Lung cancer accounts for 12% of all new cancers worldwide and is a leading cause of cancer-related mortality in the United States.1, 2, 3 Although small cell lung cancer (SCLC) comprises only 15% of lung cancer cases,2, 3 it has an annual mortality rate approaching that of breast and prostate cancer.4 Compared with the more common non-small cell lung cancer (NSCLC), SCLC is more aggressive and associated with rapid development of metastasis.2 Moreover, although SCLC is more responsive to chemotherapy and radiation therapy initially, it typically relapses quickly with treatment-resistant disease.2 In contrast to dramatic advances in chemotherapy and personalized medicine in other malignancies, the life expectancy of SCLC patients has remained <2 years for decades and is <1 year for patients with extensive disease.5, 6 The lethality of SCLC is attributed in part to the development of resistance to standard combination chemotherapies, underscoring the need to develop novel therapeutic approaches based on understanding the molecular and cellular biology of SCLC.5, 6Evasion from apoptosis is a major hallmark of cancer and a prominent factor underlying drug resistance in SCLC.3 Multiple mechanisms contribute to apoptosis resistance in SCLC, including elevated expression of the antiapoptotic Bcl-2 protein3 (Supplementary Figure S1). Tsujimoto and colleagues discovered elevated levels of Bcl-2 mRNA and protein in SCLC cells not long after their identification of Bcl-2 as the protein product of the bcl-2 gene in follicular lymphoma.7, 8 Subsequently, immunohistochemistry of 164 primary SCLC samples revealed 76% were positive for Bcl-2, a finding substantiated by microarray detection of increased BCL-2 mRNA levels in 84% of SCLC samples9, 10 and by genomic sequencing of circulating SCLC tumor cells.11 Moreover, proteomic profiling documented that Bcl-2 is more highly expressed in SCLC than in NSCLC, reflecting the vastly different biology of these lung cancer subtypes.12The major known function of Bcl-2 is to bind and sequester BH3-only proteins such as Bim, preventing these proteins from inducing apoptosis.13, 14, 15 Therefore, a major investment has been made in targeting this interaction for cancer treatment. The interaction takes place in a hydrophobic groove on Bcl-2 and the therapeutic strategy for targeting this interaction has been to develop small molecules, BH3-mimetic agents, which bind in the hydrophobic groove and induce apoptosis by displacing the BH3-only proteins. This approach has been reviewed in detail.14, 15, 16Among BH3-mimetic agents advancing through clinical trials for both hematological malignancies15, 17 and solid tumors18 are ABT-737 and its orally bioavailable derivative ABT-263 (Navitoclax). Reported studies of ABT-199, a selective inhibitor of Bcl-2, are at present limited to hematological malignancies.18 In screening a large number of cancer cell lines, the pioneering work of Oltersdorf et al.19 demonstrated potent single-agent activity of ABT-737 against cell lines representative of lymphoid malignancies and SCLC. Clinical trials of ABT-263, an orally bioavailable version of ABT-737, achieved overall response rates ranging from as high as 35% in relapsed/refractory chronic lymphocytic leukemia (CLL) and 22% in follicular lymphoma.17 Reported responses are generally less in solid tumors with the notable exception of SCLC.18 But even in SCLC, activity of ABT-263 is limited in comparison to hematological malignancies, with 1 of the 39 (3%) of patients achieving a partial response to ABT-263 and 9 of the 37 (23%) achieving stable disease in a phase I clinical trial.20 This experience suggests a need to develop additional ways of targeting Bcl-2 for cancer treatment.A potential alternative therapeutic target for Bcl-2-positive malignancies involves interaction of Bcl-2 with the inositol 1,4,5-trisphosphate receptor (IP3R), an IP3-gated Ca2+ channel located on the endoplasmic reticulum (ER). Bcl-2 is located not only on the outer mitochondrial membrane but also on the ER, and at both of these locations, it functions as a potent inhibitor of apoptosis.21, 22, 23 ER-localized Bcl-2 interacts with IP3Rs and inhibits apoptosis by preventing excessive IP3R-mediated Ca2+ transfer from the ER lumen into the cytoplasm and nearby mitochondria.24, 25, 26 Notably, regions of Bcl-2 involved in binding BH3-only proteins and IP3Rs are entirely different. Whereas BH3-only proteins and their BH3-mimetic counterparts bind in a hydrophobic groove composed of BH3 domains 1–3 of Bcl-2,13, 14 the BH4 domain of Bcl-2 is necessary for interaction with IP3Rs.27 To develop a peptide inhibitor of Bcl-2–IP3R interaction, we identified the Bcl-2-binding region on the IP3R and developed a small synthetic 20 amino-acid peptide corresponding to this region.28 This peptide, when fused to the cell-penetrating peptide of HIV TAT, binds to the BH4 domain of Bcl-2 and functions as a decoy peptide, inhibiting Bcl-2–IP3R interaction.29, 30 We currently refer to this peptide as BIRD-2 (Bcl-2-IP3
Receptor Disruptor-2), having formerly named it TAT-IDPDD/AA.31 By disrupting the Bcl-2–IP3R interaction, BIRD-2 abrogates Bcl-2 control over IP3R-mediated Ca2+ elevation and induces Ca2+-mediated apoptosis in primary human CLL cells29 and diffuse large B-cell lymphoma cells.32 Notably, BIRD-2 does not kill normal cells, including human lymphocytes isolated from peripheral blood29 and normal murine embryonic fibroblasts (F Zhong and C Distelhorst, unpublished data).The present investigation was undertaken to determine whether Bcl-2–IP3R interaction is a potentially useful therapeutic target in SCLC. In support of this concept, we find the majority of SCLC lines tested are sensitive to BIRD-2-induced apoptosis and that BIRD-2 induces apoptosis in several ABT-263-resistant SCLC lines. BIRD-2, we find, lacks generalized cytotoxicity as it does not induce cell death in NSCLC lines or a normal lung epithelial line. On the other hand, we find that BIRD-2 and ABT-263 synergize in killing SCLC cells. These findings for the first time provide preclinical evidence of the potential value of targeting both antiapoptotic mechanisms of Bcl-2 for the treatment of SCLC. 相似文献
84.
Tracey Houston Michael R. Moore Kenneth E.L. McColl Edward J. Fitzsimons 《Biochimica et Biophysica Acta (BBA)/General Subjects》1994,1201(1):85-93
The development of haem biosynthetic enzyme activity during normoblastic human erythropoiesis was examined in seven patients. The first and last enzymes of the haem biosynthetic pathway, ALA synthase and ferrochelatase, were assayed by radiochemical/high performance liquid chromatographic (HPLC) methods. An assay for ferrochelatase activity in human bone marrow was developed. Enzyme substrates were protoporphyrin IX and 59Fe2+ ions. 59Fe-labelled haem was isolated by organic solvent extraction/sorbent extraction followed by reversed-phase HPLC. Optimal activity occurred at pH 7.3 in the presence of ascorbic acid, in darkness and under anaerobic conditions. Haem production was proportional to cell number and was linear with time to 30 min. The assay was sensitive to the picomolar range of haem production. ALA synthase and ferrochelatase activity was assayed in four highly purified age-matched erythroid cell populations. ALA synthase activity was maximal in the most immature erythoid cells and diminished as the cells matured with an overall five fold loss of activity from proerythroblast to late erythroblast development. Ferrochelatase activity was, however, more stable with less than a two fold change in activity observed during the same period of erythroid differentiation. Maximal activity occurred in erythroid fractions enriched with intermediate erythroblasts. These results support sequential rather than simultaneous appearance of these enzymes during normoblastic erythropoiesis. Quantitative analysis of relative enzyme activity however indicates that at all times during erythroid differentiation ferrochelatase activity is present in excess to that theoretically required relative to ALA synthase activity since ALA and haem are not produced in stoichiometric amounts. The lability of ALA synthase versus the stability and gross relative excess of ferrochelatase activity indicates a far greater role for ALA synthase in the regulation of erythroid haem biosynthesis than for ferrochelatase. 相似文献
85.
86.
McColl G Killilea DW Hubbard AE Vantipalli MC Melov S Lithgow GJ 《The Journal of biological chemistry》2008,283(1):350-357
Lithium (Li(+)) has been used to treat mood affect disorders, including bipolar, for decades. This drug is neuroprotective and has several identified molecular targets. However, it has a narrow therapeutic range and the one or more underlying mechanisms of its therapeutic action are not understood. Here we describe a pharmacogenetic study of Li(+) in the nematode Caenorhabditis elegans. Exposure to Li(+) at clinically relevant concentrations throughout adulthood increases survival during normal aging (up to 46% median increase). Longevity is extended via a novel mechanism with altered expression of genes encoding nucleosome-associated functions. Li(+) treatment results in reduced expression of the worm ortholog of LSD-1 (T08D10.2), a histone demethylase; knockdown by RNA interference of T08D10.2 is sufficient to extend longevity ( approximately 25% median increase), suggesting Li(+) regulates survival by modulating histone methylation and chromatin structure. 相似文献
87.
88.
Response of Two Heat Shock Genes to Selection for Knockdown Heat Resistance in Drosophila Melanogaster 总被引:1,自引:0,他引:1 下载免费PDF全文
To identify genes involved in stress resistance and heat hardening, replicate lines of Drosophila melanogaster were selected for increased resistance to knockdown by a 39° heat stress. Two selective regimes were used, one with and one without prior hardening. Mean knockdown times were increased from ~5 min to >20 min after 18 generations. Initial realized heritabilities were as high as 10% for lines selected without hardening, and crosses between lines indicated simple additive gene effects for the selected phenotypes. To survey allelic variation and correlated selection responses in two candidate stress genes, hsr-omega and hsp68, we applied denaturing gradient gel electrophoresis to amplified DNA sequences from small regions of these genes. After eight generations of selection, allele frequencies at both loci showed correlated responses for selection following hardening, but not without hardening. The hardening process itself was associated with a hsp68 frequency change in the opposite direction to that associated with selection that followed hardening. These stress loci are closely linked on chromosome III, and the hardening selection established a disequilibrium, suggesting an epistatic effect on resistance. The data indicate that molecular variation in both hsr-omega and hsp68 contribute to natural heritable variation for hardened heat resistance. 相似文献
89.
90.
Chemokines and dendritic cells: a crucial alliance 总被引:8,自引:0,他引:8
McColl SR 《Immunology and cell biology》2002,80(5):489-496
Dendritic cells (DC) are bone marrow-derived professional antigen-presenting cells that function as sentinels of the immune system. Their importance in immunity resides in their unique ability to prime or tolerize T lymphocytes, thereby initiating or inhibiting immune responses. They reside in all tissues and organs and upon appropriate activation, migrate to secondary lymphoid organs to present antigen to T lymphocytes in the T cell zones. Because of this central role in T cell activation, there is a great deal of interest in using DC therapeutically to deliver positive or negative signals to the immune system. The DC system is critically dependent on the ability of DC at different stages of maturation to respond to a range of soluble and cell-bound signals, including members of the chemokine gene superfamily. This review will describe the interactions between DC and the chemokine system. 相似文献