首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   248篇
  免费   10篇
  2023年   2篇
  2022年   2篇
  2021年   4篇
  2020年   3篇
  2019年   3篇
  2018年   3篇
  2017年   6篇
  2016年   3篇
  2015年   8篇
  2014年   14篇
  2013年   11篇
  2012年   16篇
  2011年   26篇
  2010年   10篇
  2009年   3篇
  2008年   4篇
  2007年   8篇
  2006年   9篇
  2005年   10篇
  2004年   10篇
  2003年   4篇
  2002年   8篇
  2001年   10篇
  2000年   12篇
  1999年   6篇
  1998年   5篇
  1997年   5篇
  1996年   1篇
  1995年   2篇
  1994年   4篇
  1993年   2篇
  1992年   5篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   7篇
  1987年   1篇
  1986年   5篇
  1985年   5篇
  1984年   4篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1977年   2篇
  1969年   2篇
  1967年   3篇
  1964年   1篇
  1946年   1篇
排序方式: 共有258条查询结果,搜索用时 46 毫秒
41.
We recently showed that thyroglobulin (Tg) is a heparin-binding protein and that heparin inhibits binding of Tg to its endocytic receptor megalin (gp330). Here we have identified a heparin-binding region in the carboxyl-terminal portion of rat Tg and have studied its involvement in megalin binding. Rat thyroid extracts, obtained by ammonium sulfate precipitation, were separated by column fractionation into four Tg polypeptides, with apparent masses of 660, 330, 210, and 50 kDa. As assessed by enzyme-linked immunoadsorbent assays and ligand blot binding assays, megalin bound to intact Tg (660 and 330 kDa) and, to a even greater extent, to the 210-kDa Tg polypeptide. Furthermore, the 210-kDa Tg polypeptide inhibited megalin binding to intact Tg by approximately 70%. Solid phase assays showed binding of biotin-labeled heparin to intact Tg and to the 210-kDa Tg polypeptide. We characterized the 210-kDa Tg polypeptide by matrix-assisted laser desorption/ionization mass spectrometry analysis and found that it corresponds to the carboxyl-terminal portion of rat Tg. We developed a synthetic peptide corresponding to a 15-amino acid sequence in the carboxyl-terminal portion of rat Tg (Arg(689)-Lys(703)), containing a heparin-binding consensus sequence (SRRLKRP) and demonstrated heparin binding to this peptide. A rabbit antibody raised against the peptide recognized intact Tg in its native conformation and under denaturing conditions. This antibody markedly reduced heparin-binding to intact Tg, indicating that the region of native Tg corresponding to the peptide is involved in heparin binding. Furthermore, the anti-Tg peptide antibody almost completely inhibited binding of megalin to Tg, suggesting that the Tg region containing the peptide sequence is required for megalin binding. Physiologically, Tg binding to megalin on thyroid cells may be facilitated by Tg interaction with heparin-like molecules (heparan sulfate proteoglycans) via adjacent binding sites.  相似文献   
42.
BackgroundHealthcare systems in dengue-endemic countries are often overburdened due to the high number of patients hospitalized according to dengue management guidelines. We systematically evaluated clinical outcomes in a large cohort of patients hospitalized with acute dengue to support triaging of patients to ambulatory versus inpatient management in the future.Methods/Principal findingsFrom June 2017- December 2018, we conducted surveillance among children and adults with fever within the prior 7 days who were hospitalized at the largest tertiary-care (1,800 bed) hospital in the Southern Province, Sri Lanka. Patients who developed platelet count ≤100,000/μL (threshold for hospital admission in Sri Lanka) and who met at least two clinical criteria consistent with dengue were eligible for enrollment. We confirmed acute dengue by testing sera collected at enrollment for dengue NS1 antigen or IgM antibodies. We defined primary outcomes as per the 1997 and 2009 World Health Organization (WHO) classification criteria: dengue hemorrhagic fever (DHF; WHO 1997), dengue shock syndrome (DSS; WHO 1997), and severe dengue (WHO 2009). Overall, 1064 patients were confirmed as having acute dengue: 318 (17.4%) by NS1 rapid antigen testing and 746 (40.7%) by IgM antibody testing. Of these 1064 patients, 994 (93.4%) were adults ≥18 years and 704 (66.2%) were male. The majority (56, 80%) of children and more than half of adults (544, 54.7%) developed DHF during hospitalization, while 6 (8.6%) children and 22 (2.2%) adults developed DSS. Overall, 10 (14.3%) children and 113 (11.4%) adults developed severe dengue. A total of 2 (0.2%) patients died during hospitalization.ConclusionsOne-half of patients hospitalized with acute dengue progressed to develop DHF and a very small number developed DSS or severe dengue. Developing an algorithm for triaging patients to ambulatory versus inpatient management should be the future goal to optimize utilization of healthcare resources in dengue-endemic countries.  相似文献   
43.
The invasive freshwater snail Tarebia granifera (Lamarck, 1822) was first reported in South Africa in 1999 and it has become widespread across the country, with some evidence to suggest that it reduces benthic macroinvertebrate biodiversity. The current study aimed to identify the primary abiotic drivers behind abundance patterns of T. granifera, by comparing the current abundance of the snail in three different regions, and at three depths, of the highly modified Nseleni River in KwaZulu-Natal, South Africa. Tarebia granifera was well established throughout the Nseleni River system, with an overall preference for shallow waters and seasonal temporal patterns of abundance. Although it is uncertain what the ecological impacts of the snail in this system are, its high abundances suggest that it should be controlled where possible and prevented from invading other systems in the region.  相似文献   
44.

Background  

Exposure of cells to environmental stress conditions can lead to the interruption of several intracellular processes, in particular those performed by macromolecular complexes such as the spliceosome.  相似文献   
45.

Background  

Glycosyl transferases transfer glycosyl groups onto their substrate. Localization partially defines their function. Glycosyl transferase 25 domain 1 (GLT25D1) was recently shown to have galactosyltransferase activity towards collagens and another well known substrate, mannose binding lectin (MBL). To gain more insight in the role of galactosylation of lysines in the Gly-X-Lys repeats of collagenous proteins, we investigated the subcellular localization of GLT25D1.  相似文献   
46.
Clathrin-mediated endocytosis (CME) regulates many cell physiological processes such as the internalization of growth factors and receptors, entry of pathogens, and synaptic transmission. Within the endocytic network, clathrin functions as a central organizing platform for coated pit assembly and dissociation via its terminal domain (TD). We report the design and synthesis of two compounds named pitstops that selectively block endocytic ligand association with the clathrin TD as confirmed by X-ray crystallography. Pitstop-induced inhibition of clathrin TD function acutely interferes with receptor-mediated endocytosis, entry of HIV, and synaptic vesicle recycling. Endocytosis inhibition is caused by a dramatic increase in the lifetimes of clathrin coat components, including FCHo, clathrin, and dynamin, suggesting that the clathrin TD regulates coated pit dynamics. Pitstops provide new tools to address clathrin function in cell physiology with potential applications as inhibitors of virus and pathogen entry and as modulators of cell signaling.  相似文献   
47.
The likelihood that coupled dynamical systems will completely synchronize, or become “coherent”, is often of great applied interest. Previous work has established conditions for local stability of coherent solutions and global attractivity of coherent manifolds in a variety of spatially explicit models. We consider models of communities coupled by dispersal and explore intermediate regimes in which it can be shown that states in phase space regions of positive measure are attracted to coherent solutions. Our methods yield rigorous and practically useful coherence criteria that facilitate useful analyses of ecological and epidemiological problems.  相似文献   
48.
Peptaibols are a group of small peptides having a high α-aminoisobutyric acid (Aib) content and produced by filamentous fungi, especially by the members of the genus Trichoderma (anamorph Hypocrea). These antibiotics are economically important for their anti-microbial and anti-cancer properties as well as ability to induce systemic resistance in plants against microbial invasion. In this study we present sequences of two classes (11-residue and 14-residue) of peptaibols produced by the biocontrol fungus Trichoderma virens. Of the 35 11-residue peptaibols sequenced, 18 are hitherto not described, and all the 53 14-residue sequences described by us here are new. We have also identified a peptaibol synthetase (non-ribosomal peptide synthetase, NRPS) with 14 complete modules in the genome of this fungus and disruption of this single gene (designated as tex2) resulted in the loss of both the classes of peptaibols. We, thus present here an unprecedented case where a single NRPS encodes for two classes of peptaibols. The new peptaibols identified here could have applications as therapeutic agents for the management of human and plant health.  相似文献   
49.
50.
The low survival and differentiation rates of stem cells after either transplantation or neural injury have been a major concern of stem cell-based therapy. Thus, further understanding long-term survival and differentiation of stem cells may uncover new targets for discovery and development of novel therapeutic approaches. We have previously described the impact of mitochondrial apoptosis-related events in modulating neural stem cell (NSC) fate. In addition, the endogenous bile acid, tauroursodeoxycholic acid (TUDCA) was shown to be neuroprotective in several animal models of neurodegenerative disorders by acting as an anti-apoptotic and anti-oxidant molecule at the mitochondrial level. Here, we hypothesize that TUDCA might also play a role on NSC fate decision. We found that TUDCA prevents mitochondrial apoptotic events typical of early-stage mouse NSC differentiation, preserves mitochondrial integrity and function, while enhancing self-renewal potential and accelerating cell cycle exit of NSCs. Interestingly, TUDCA prevention of mitochondrial alterations interfered with NSC differentiation potential by favoring neuronal rather than astroglial conversion. Finally, inhibition of mitochondrial reactive oxygen species (mtROS) scavenger and adenosine triphosphate (ATP) synthase revealed that the effect of TUDCA is dependent on mtROS and ATP regulation levels. Collectively, these data underline the importance of mitochondrial stress control of NSC fate decision and support a new role for TUDCA in this process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号