首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   617篇
  免费   80篇
  697篇
  2022年   8篇
  2021年   11篇
  2020年   9篇
  2018年   8篇
  2017年   12篇
  2016年   15篇
  2015年   16篇
  2014年   14篇
  2013年   11篇
  2012年   20篇
  2011年   21篇
  2010年   18篇
  2009年   22篇
  2008年   21篇
  2007年   30篇
  2006年   19篇
  2005年   24篇
  2004年   21篇
  2003年   20篇
  2002年   14篇
  2001年   17篇
  2000年   12篇
  1999年   17篇
  1998年   9篇
  1997年   10篇
  1996年   8篇
  1992年   9篇
  1991年   8篇
  1990年   14篇
  1989年   16篇
  1988年   9篇
  1987年   11篇
  1986年   12篇
  1985年   21篇
  1984年   13篇
  1983年   9篇
  1982年   6篇
  1981年   7篇
  1980年   8篇
  1979年   11篇
  1978年   7篇
  1977年   12篇
  1976年   5篇
  1975年   6篇
  1974年   11篇
  1973年   6篇
  1972年   9篇
  1971年   9篇
  1970年   8篇
  1966年   7篇
排序方式: 共有697条查询结果,搜索用时 15 毫秒
161.
The effects of third ventricular (IVT) injection of 25 μg of bradykinin (BK) upon plasma levels of LH, FSH, TSH, GH and prolactin were investigated in conscious ovariectomized female rats bearing indwelling jugular cannulae. Some animals were pretreated with bradykinin potentiating factor (BPF). Intravenous administration of BK had no effect upon hormone levels. IVT injection of BK significantly depressed plasma prolactin levels at 15 and 30 min post-drug, with levels returning to control values by 60 min. Pretreatment of animals with BPF (75 μg/3 μl) prolonged the prolactin suppression induced by BK for up to two hours. Plasma LH, FSH, TSH and GH levels in BK-rats were not significantly different from those of saline-injected animals at any time point measured. Neither BPF alone nor in conjunction with BK had any effects upon plasma levels of TSH; however, BK plus BPF suppressed FSH concentrations at 75 min post-BPF, while BPF alone appeared to increase GH levels at 45 min. In vitro incubation of hemipituitaries with 0.083, 0.83 or 8.33 μg/ml BK had no effect upon the release of LH, TSH or prolactin compared to control values. However, the secretion of GH and FSH was suppressed by the lowest dose of BK tested. These results suggest that BK may play a physiological inhibitory role in the regulation of prolactin, which can be augmented by preventing its degradation, i.e. via BPF. The effect of the peptide seems to be mediated by the CNS since neither intravenous injection of BK nor in vitro incubation of pituitaries with the peptide modified prolactin release.  相似文献   
162.
The overexpression of CYP1 family of enzymes is reported to be associated with development of human carcinomas. It has been well reported that CYP1A1 specific inhibitors prevents carcinogenesis. Herein, thirteen pyridine-4-yl series of chalcones were synthesized and screened for inhibition of CYP1 isoforms 1A1, 1B1 and 1A2 in Sacchrosomes? and live human HEK293 cells. The structure-activity relationship analysis indicated that chalcones bearing tri-alkoxy groups (8a and 8k) on non-heterocyclic ring displayed selective inhibition of CYP1A1 enzyme, with IC50 values of 58 and 65?nM, respectively. The 3,4,5-trimethoxy substituted derivative 8a have shown >10-fold selectivity towards CYP1A1 with respect to other enzymes of the CYP1 sub-family and >100-fold selectivity with respect to CYP2 and CYP3 family of enzymes. The potent and selective CYP1A1 inhibitor 8a displayed antagonism of B[a]P mediated activation of aromatic hydrocarbon receptor (AhR) in yeast cells, and also protected human cells from CYP1A1-mediated B[a]P toxicity in human cells. This potent and selective inhibitor of CYP1A1 enzyme have a potential for development as cancer chemopreventive agent.  相似文献   
163.
A novel class of 1,3,5-pyrazoles has been discovered as potent human glucagon receptor antagonists. Notably, compound 26 is orally bioavailable in several preclinical species and shows selectivity towards cardiac ion channels, other family B receptors such hGIP and hGLP1, and a large panel of enzymes and additional receptors. When dosed orally, compound 26 is efficacious in suppressing glucagon induced plasma glucose excursion in rhesus monkey and transgenic murine pharmacodynamic models at 1 and 10 mpk, respectively.  相似文献   
164.
165.
Dees WL  Hiney JK  Sower SA  Yu WH  McCann SM 《Peptides》1999,20(12):1503-1511
A highly specific antiserum against lamprey gonadotropin-releasing hormone (GnRH) was used to localize 1-GnRH in areas of the rat brain associated with reproductive function. Immunoreactive 1-GnRH-like neurons were observed in the ventromedial preoptic area (POA), the region of the diagonal band of Broca and the organum vasculosum lamina terminalis, with fiber projections to the rostral wall of the third ventricle and the organum vasculosum lamina terminalis. Another population of 1-GnRH-like neurons was localized in the dorsomedial and lateral POA, with nerve fibers projecting caudally and ventrally to terminate in the external layer of the median eminence. Other fibers apparently projected caudally and circumventrically to terminate around the cerebral aqueduct in the mid-brain central gray. By using a highly specific antiserum directed against mammalian luteinizing hormone-releasing hormone (m-LHRH), the localization of the LHRH neuronal system was compared to that of the 1-GnRH system. There were no LHRH neurons in the dorsomedial or the lateral region of the POA that contained the 1-GnRH neurons. As expected, there was a large population of LHRH neurons in the ventromedial POA associated with the diagonal band of Broca and organum vasculosum lamina terminalis. In both of these regions, there were many more LHRH neurons than 1-GnRH neurons and the LHRH neurons extended more dorsally and laterally than the 1-GnRH neurons. The LHRH neurons seemed to project to the median eminence in the same areas as those that were innervated by the 1-GnRH neurons. Absorption studies indicated that 1-GnRH cell bodies were eliminated by adding 1 microg of either 1-GnRH-I or 1-GnRH-III, but not m-LHRH to the antiserum before use. Fibers were largely eliminated by the addition of 1 microg 1-GnRH-III to the antiserum. No chicken GnRH-II neurons or nerve fibers could be visualized by immunostaining. Because the antiserum recognized GnRH-I and GnRH-III equally, we have visualized an 1-GnRH system in rat brain. The results are consistent with the presence of either one or both of these peptides within the rat hypothalamus. Because 1-GnRH-I has only weak nonselective gonadotropin-releasing activity, whereas 1-GnRH-III is a highly selective releaser of follicle-stimulating hormone, and because 1-GnRH neurons are located in areas known to control follicle-stimulating hormone release selectively, our results support the hypothesis that 1-GnRH-III, or a closely related peptide, may be mammalian follicle-stimulating hormone-releasing factor.  相似文献   
166.
167.
Verotoxins (VTs) from Escherichia coli elicit human vascular disease as a consequence of specific binding to globotriaosylceramide (Gb3) receptors on endothelial cell surfaces. Molecular models based on the VT1 crystal structure were used previously to investigate the structural basis for receptor recognition by VT1 and other verotoxins. Interestingly, these model-based predictions of glycolipid binding to VT1 differ somewhat from recently published structural data from cocrystals of the VT1 B-subunit (VT1B) and an analogue of the sugar moiety of Gb3. In this study, fluorescence spectroscopy was used to test model-based predictions of the location of Gb3 binding on the B-subunit pentamer of VT1. Resonance energy transfer was used to calculate the distance from a coumarin probe used to replace the acyl tail of Gb3 and the single tryptophan residue (Trp34) present within each VT1B monomer. The observed energy transfer efficiency (greater than 95%) suggests that these two moieties are approximately 13.3 A apart when a single distance is assumed. This distance is consistent with proposed models for the fit of Gb3 within the "cleft site" of the VT1 B-subunit. When the distances from Trp34 to the other coumarinGb3 molecules (bound to each of the four remaining monomers within the VT1B pentamer) are taken into consideration, it appears likely that the coumarin-modified Gb3 analogue used in this study associates with the previously proposed receptor binding site II of VT1. This is consistent with an observed binding preference of VT2c for coumarinGb3. To provide additional information on the association of Gb3 with the VT1 B-subunit, the influence of Gb3 glycolipid binding on the accessibility of Trp34 to different quenching agents in solution was then examined. Taken together, the data suggest that coumarin-labeled Gb3 preferentially binds to site II on VT1 in a position that is consistent with the previously described molecular models.  相似文献   
168.
169.
Arabinogalactan proteins (AGPs) are secreted or membrane-associated glycoproteins that have been operationally defined as binding to [beta]-glucosyl Yariv artificial antigen, being rich in arabinose and galactose, and containing high levels of alanine, serine, and hydroxyproline. Using an anti-AGP monoclonal antibody (MAC 207) bound to cyanogen bromide-activated Sepharose 4B, we have purified by immunoaffinity chromatography an extracellular AGP from the culture medium of suspension-cultured cells of carrot (Daucus carota). The apparent molecular mass of this highly glycosylated proteoglycan is 70 to 100 kD as judged by sodium dodecyl sulfate-polyacrylamide gels. Although its sugar analysis, [beta]-glucosyl Yariv binding, and high alanine, serine, and proline content are consistent with it being an AGP, the amino acid composition unexpectedly revealed this molecule to have no detectable hydroxyproline. This suggests that this glycoprotein is not a "classical" AGP, but represents the first example of a new class of hydroxyproline-poor AGPs. Deglycosylation of the AGP with anhydrous hydrogen fluoride revealed that the purified proteoglycan contains probably a single core protein with an apparent molecular mass of 30 kD. Direct visualization of the native AGP in the electron microscope showed ellipsoidal putative AGP monomers, approximately 25 nm by 15 nm, that showed a strong tendency to self assemble into higher-order structures. Upon desiccation, the glycosylated AGP formed paracrystalline arrays visible in the light microscope. Polarized Fourier transform infrared microspectroscopy of these arrays demonstrated a high degree of polarization of the sugar moieties under these conditions. These results put possible constraints on current models of AGP structure; a putative role for these novel AGPs as pectin-binding proteins is discussed.  相似文献   
170.
Acetylcholinesterase (EC 3.1.1.7) purified by affinity chromatography from 1.0 m ionic strength extracts of electric organ from the eel Electrophorus electricus consists of a mixture of 18 and 14 S enzyme forms. When examined by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate without exposure to disulfide reducing agents, these purified preparations show two major high molecular weight bands (>300,000), labeled oligomers A and B, in addition to a major band corresponding to catalytic subunit dimers (150,000 Mr). All these major bands reflect intersubunit disulfide bonding. The 18 and 14 S forms in purified preparations were separated by extensive sucrose gradient centrifugation. Gel analyses of the isolated 18 and 14 S pools indicated that the larger oligomer A derives from the 18 S pool, while oligomer B is found primarily in the 14 S pool. These observations support a previous model for 18 S acetylcholinesterase (T. L. Rosenberry and J. M. Richardson (1977) Biochemistry, in press) which considers this molecule to consist of one oligomer A unit, composed of three pairs of catalytic subunits disulfide-bonded to a collagen-like tail structure, and three catalytic subunit dimers. Proteolytic cleavage of the tail structure in the 18 S form can occur to release an 11 S enzyme tetramer containing a residual tail fragment and to leave a 14 S form. We propose this 14 S form to consist of one oligomer B unit, composed of two pairs of catalytic subunits disulfide-bonded to the remaining tail structure, and two catalytic subunit dimers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号