首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   81篇
  免费   17篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2019年   3篇
  2018年   2篇
  2017年   3篇
  2016年   7篇
  2015年   2篇
  2014年   4篇
  2013年   1篇
  2012年   4篇
  2011年   3篇
  2010年   4篇
  2009年   5篇
  2007年   4篇
  2006年   1篇
  2005年   1篇
  2004年   3篇
  2003年   2篇
  2002年   2篇
  2000年   1篇
  1999年   2篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1992年   3篇
  1991年   1篇
  1990年   1篇
  1989年   4篇
  1988年   2篇
  1987年   3篇
  1986年   3篇
  1985年   2篇
  1983年   3篇
  1982年   1篇
  1979年   2篇
  1978年   2篇
  1976年   2篇
  1974年   1篇
  1973年   2篇
  1972年   1篇
  1971年   2篇
排序方式: 共有98条查询结果,搜索用时 15 毫秒
81.
Model predictions of extinction risks from anthropogenic climate change are dire, but still overly simplistic. To reliably predict at‐risk species we need to know which species are currently responding, which are not, and what traits are mediating the responses. For mammals, we have yet to identify overarching physiological, behavioral, or biogeographic traits determining species' responses to climate change, but they must exist. To date, 73 mammal species in North America and eight additional species worldwide have been assessed for responses to climate change, including local extirpations, range contractions and shifts, decreased abundance, phenological shifts, morphological or genetic changes. Only 52% of those species have responded as expected, 7% responded opposite to expectations, and the remaining 41% have not responded. Which mammals are and are not responding to climate change is mediated predominantly by body size and activity times (phylogenetic multivariate logistic regressions, P < 0.0001). Large mammals respond more, for example, an elk is 27 times more likely to respond to climate change than a shrew. Obligate diurnal and nocturnal mammals are more than twice as likely to respond as mammals with flexible activity times (P < 0.0001). Among the other traits examined, species with higher latitudinal and elevational ranges were more likely to respond to climate change in some analyses, whereas hibernation, heterothermy, burrowing, nesting, and study location did not influence responses. These results indicate that some mammal species can behaviorally escape climate change whereas others cannot, analogous to paleontology's climate sheltering hypothesis. Including body size and activity flexibility traits into future extinction risk forecasts should substantially improve their predictive utility for conservation and management.  相似文献   
82.
The Spionidae is one of the largest and most studied annelid families, but to date, the development and differentiation of post-metamorphic anatomy have not been documented. This study used scanning electron microscopy to examine the development of the branchiae, presumed respiratory organs, in Streblospio benedicti. Branchiae in this species are prominent, paired head structures and first appear around the time of metamorphosis, but do not complete their development until the worm reaches the older juvenile or adult stages. We observed that as the branchiae grew, their overall morphology changed through four different shapes: small bud, tubular, tapered, and, finally, bilimbate. In addition, the abfrontal and frontal surfaces each possessed a unique set of cilia patterns, which we named, and these arose in a particular sequence between the 8- and 35-chaetiger stages. This detailed examination of every stage of branchial development led us to discover that branchia in Streblospio benedicti was a sexually dimorphic organ. Streblospio benedicti is one of approximately eight Spionidae in which there is any type of structural sexual dimorphism, and it is the only species in which sexually dimorphic branchiae are found. The male's frontal surface had four unique cilia patterns, and we hypothesize that those located around the medial protrusion capture and control the release of the spermatophores. This first documentation of a spionid's branchial developmental sequence revealed that not only is this respiratory organ involved in reproduction, but it significantly differentiates after metamorphosis through adulthood.  相似文献   
83.
Dominant Grasses Suppress Local Diversity in Restored Tallgrass Prairie   总被引:1,自引:0,他引:1  
Warm‐season (C4) grasses commonly dominate tallgrass prairie restorations, often at the expense of subordinate grasses and forbs that contribute most to diversity in this ecosystem. To assess whether the cover and abundance of dominant grass species constrain plant diversity, we removed 0, 50, or 100% of tillers of two dominant species (Andropogon gerardii or Panicum virgatum) in a 7‐year‐old prairie restoration. Removing 100% of the most abundant species, A. gerardii, significantly increased light availability, forb productivity, forb cover, species richness, species evenness, and species diversity. Removal of a less abundant but very common species, P. virgatum, did not significantly affect resource availability or the local plant community. We observed no effect of removal treatments on critical belowground resources, including inorganic soil N or soil moisture. Species richness was inversely correlated with total grass productivity and percent grass cover and positively correlated with light availability at the soil surface. These relationships suggest that differential species richness among removal treatments resulted from treatment induced differences in aboveground resources rather than the belowground resources. Selective removal of the dominant species A. gerardii provided an opportunity for seeded forb species to become established leading to an increase in species richness and diversity. Therefore, management practices that target reductions in cover or biomass of the dominant species may enhance diversity in established and grass‐dominated mesic grassland restorations.  相似文献   
84.
Photolysis of mixtures of CO:NH3:H2O at 12 K results in the formation of an organic residue which is not volatile in high vacuum at room temperature. Analysis of this fraction by GC-MS resulted in the detection of C2–C3 hydroxy acids and hydroxy amides, glycerol, urea, glycine, hexamethylene tetramine, formamidine and ethanolamine. Use of isotopically labeled gases made it possible to establish that the observed products were not contaminants. The reaction pathways for the formation of these products were determined from the position of the isotopic labels in the mass spectral fragments. The significance of these findings to the composition of comets and the origins of life is discussed.  相似文献   
85.
86.
87.
88.
89.
90.
31P-NMR was used to study turnip seeds (Brassica rapa L.) incubated in 0.05 M K2SO4 solution, where they germinate and grow normally, and in 0.05 M K2S2O8 (potassium peroxydisulfate), where they germinate but do not grow. With 31P-NMR it is possible to measure cytoplasmic and vacuolar pH, to identify phosphorus metabolites and to measure their relative concentrations in vivo. Results show a nearly constant vacuolar pH during germination and growth in K2SO4 contrasted with a steady decrease in vacuolar pH for seeds exposed to K2S2O8. Cytoplasmic pH decreases during germination and then stabilizes during growth in K2SO4; it follows the same course during germination but then drops precipitously in K2S2O8. The quantity of dissolved phosphates increases very rapidly during the first few hours after moistening, then more slowly until germination occurs. Following germination, the amount of vacuolar phosphate continues to increase, while the cytoplasmic phosphate does not. These results are consistent with a mechanism in which K2S2O8 inhibits growth by intercepting indoleacetic acid.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号