首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   120篇
  免费   9篇
  129篇
  2022年   5篇
  2021年   4篇
  2020年   4篇
  2019年   5篇
  2018年   5篇
  2017年   4篇
  2016年   4篇
  2015年   10篇
  2014年   5篇
  2013年   8篇
  2012年   8篇
  2011年   9篇
  2010年   5篇
  2009年   4篇
  2008年   6篇
  2007年   4篇
  2006年   5篇
  2005年   3篇
  2004年   6篇
  2003年   4篇
  2002年   2篇
  2001年   4篇
  2000年   3篇
  1999年   4篇
  1998年   1篇
  1997年   2篇
  1991年   1篇
  1990年   1篇
  1983年   1篇
  1971年   1篇
  1967年   1篇
排序方式: 共有129条查询结果,搜索用时 15 毫秒
11.
In water of varying ion content, the gills and kidney of fishes contribute significantly to the maintenance of salt and water balance. However, little is known about the molecular architecture of the tight junction (TJ) complex and the regulation of paracellular permeability characteristics in these tissues. In the current studies, puffer fish (Tetraodon biocellatus) were acclimated to freshwater (FW), seawater (SW) or ion-poor freshwater (IPW) conditions. Following acclimation, alterations in systemic endpoints of hydromineral status were examined in conjunction with changes in gill and kidney epithelia morphology/morphometrics, as well as claudin TJ protein mRNA abundance. T. biocellatus were able to maintain endpoints of hydromineral status within relatively tight limits across the broad range of water ion content examined. Both gill and kidney tissue exhibited substantial alterations in morphology as well as claudin TJ protein mRNA abundance. These responses were particularly pronounced when comparing fish acclimated to SW versus those acclimated to IPW. TEM observations of IPW-acclimated fish gills revealed the presence of cells that exhibited the typical characteristics of gill mitochondria-rich cells (e.g. voluminous, Na+-K+-ATPase-immunoreactive, exposed to the external environment at the apical surface), but were not mitochondria-rich. To our knowledge, this type of cell has not previously been described in hyperosmoregulating fish gills. Furthermore, modifications in the morphometrics and claudin mRNA abundance of kidney tissue support the notion that spatial alterations in claudin TJ proteins along the nephron of fishes will likely play an important role in the regulation of salt and water balance in these organisms.  相似文献   
12.
Modern fluorescence microscopy modalities, such as light-sheet microscopy, are capable of acquiring large three-dimensional images at high data rate. This creates a bottleneck in computational processing and analysis of the acquired images, as the rate of acquisition outpaces the speed of processing. Moreover, images can be so large that they do not fit the main memory of a single computer. We address both issues by developing a distributed parallel algorithm for segmentation of large fluorescence microscopy images. The method is based on the versatile Discrete Region Competition algorithm, which has previously proven useful in microscopy image segmentation. The present distributed implementation decomposes the input image into smaller sub-images that are distributed across multiple computers. Using network communication, the computers orchestrate the collectively solving of the global segmentation problem. This not only enables segmentation of large images (we test images of up to 1010 pixels), but also accelerates segmentation to match the time scale of image acquisition. Such acquisition-rate image segmentation is a prerequisite for the smart microscopes of the future and enables online data compression and interactive experiments.  相似文献   
13.
IntroductionCutaneous leishmaniasis (CL) is currently a health problem in several parts of Iran, particularly Kerman. This study was conducted to determine the incidence and trend of CL in Kerman during 2014–2020 and its forecast up to 2023. The effects of meteorological variables on incidence was also evaluated.Materials and methods4993 definite cases of CL recorded from January 2014 to December 2020 by the Vice-Chancellor for Health at Kerman University of Medical Sciences were entered. Meteorological variables were obtained from the national meteorological site. The time series SARIMA methods were used to evaluate the effects of meteorological variables on CL.ResultsMonthly rainfall at the lag 0 (β = -0.507, 95% confidence interval:-0.955,-0.058) and monthly sunny hours at the lag 0 (β = -0.214, 95% confidence interval:-0.308,-0.119) negatively associated with the incidence of CL. Based on the Akaike information criterion (AIC) the multivariable model (AIC = 613) was more suitable than univariable model (AIC = 690.66) to estimate the trend and forecast the incidence up to 36 months.ConclusionThe decreasing pattern of CL in Kerman province highlights the success of preventive, diagnostic and therapeutic interventions during the recent years. However, due to endemicity of disease, extension and continuation of such interventions especially before and during the time periods with higher incidence is essential.  相似文献   
14.
15.
16.
Heterotrimeric G proteins are crucial for asymmetric cell division, but the mechanisms of signal activation remain poorly understood. Here, we establish that the evolutionarily conserved protein RIC-8 is required for proper asymmetric division of one-cell stage C. elegans embryos. Spindle severing experiments demonstrate that RIC-8 is required for generation of substantial pulling forces on astral microtubules. RIC-8 physically interacts with GOA-1 and GPA-16, two Galpha subunits that act in a partially redundant manner in one-cell stage embryos. RIC-8 preferentially binds to GDP bound GOA-1 and is a guanine nucleotide exchange factor (GEF) for GOA-1. Our analysis suggests that RIC-8 acts before the GoLoco protein GPR-1/2 in the sequence of events leading to Galpha activation. Furthermore, coimmunoprecipitation and in vivo epistasis demonstrate that inactivation of the Gbeta subunit GPB-1 alleviates the need for RIC-8 in one-cell stage embryos. Our findings suggest a mechanism in which RIC-8 favors generation of Galpha free from Gbetagamma and enables GPR-1/2 to mediate asymmetric cell division.  相似文献   
17.
During meiotic prophase I, proteinaceous structures called synaptonemal complexes (SCs) connect homologous chromosomes along their lengths via polymeric arrays of transverse filaments (TFs). Thus, control of TF polymerization is central to SC formation. Using budding yeast, we show that efficiency of TF polymerization closely correlates with the extent of SUMO conjugation to Ecm11, a component of SCs. HyperSUMOylation of Ecm11 leads to highly aggregative TFs, causing frequent assembly of extrachromosomal structures. In contrast, hypoSUMOylation leads to discontinuous, fragmented SCs, indicative of defective TF polymerization. We further show that the N terminus of the yeast TF, Zip1, serves as an activator for Ecm11 SUMOylation. Coexpression of the Zip1 N terminus and Gmc2, a binding partner of Ecm11, is sufficient to induce robust polySUMOylation of Ecm11 in nonmeiotic cells. Because TF assembly is mediated through N-terminal head-to-head associations, our results suggest that mutual activation between TF assembly and Ecm11 polySUMOylation acts as a positive feedback loop that underpins SC assembly.  相似文献   
18.
Uterine receptivity implies a dialogue between the hormonally primed maternal endometrium and the free-floating blastocyst. Endometrial stromal cells proliferate, avert apoptosis, and undergo decidualization in preparation for implantation; however, the molecular mechanisms that underlie differentiation into the decidual phenotype remain largely undefined. The Notch family of transmembrane receptors transduce extracellular signals responsible for cell survival, cell-to-cell communication, and differentiation, all fundamental processes for decidualization and pregnancy. Using a murine artificial decidualization model, pharmacological inhibition of Notch signaling by γ-secretase inhibition resulted in a significantly decreased deciduoma. Furthermore, a progesterone receptor (PR)-Cre Notch1 bigenic (Notch1(d/d)) confirmed a Notch1-dependent hypomorphic decidual phenotype. Microarray and pathway analysis, following Notch1 ablation, demonstrated significantly altered signaling repertoire. Concomitantly, hierarchical clustering demonstrated Notch1-dependent differences in gene expression. Uteri deprived of Notch1 signaling demonstrated decreased cellular proliferation; namely, reduced proliferation-specific antigen, Ki67, altered p21, cdk6, and cyclinD activity and an increased apoptotic-profile, cleaved caspase-3, Bad, and attenuated Bcl2. The results demonstrate that the preimplantation uterus relies on Notch signaling to inhibit apoptosis of stromal fibroblasts and regulate cell cycle progression, which together promotes successful decidualization. In summary, Notch1 signaling modulates multiple signaling mechanisms crucial for decidualization and these studies provide additional perspectives to the coordination of multiple signaling modalities required during decidualization.  相似文献   
19.
Here we report that mutations within the DNA-binding domain of AR, shown previously to inhibit nuclear export to the cytoplasm, cause an androgen-dependent defect in intranuclear trafficking of AR. Mutation of two conserved phenylalanines within the DNA recognition helix (F582, 583A) results in androgen-dependent arrest of AR in multiple subnuclear foci. A point mutation in one of the conserved phenylalanines (DeltaF582, F582Y) is known to cause androgen insensitivity syndrome (AIS). Both AIS mutants (DeltaF582, F582Y) and the export mutant (F582, 583A) displayed androgen-dependent arrest in foci, and all three mutants promoted androgen-dependent accumulation of the histone acetyl transferase CREB binding protein (CBP) in the foci. The foci correspond to a subnuclear compartment that is highly enriched for the steroid receptor coactivator glucocorticoid receptor-interacting protein (GRIP)-1. Agonist-bound wild-type AR induces the redistribution of GRIP-1 from foci to the nucleoplasm. This likely reflects a direct interaction between these proteins because mutation of a conserved residue within the major coactivator binding site on AR (K720A) inhibits AR-dependent dissociation of GRIP-1 from foci. GRIP-1 also remains foci-associated in the presence of agonist-bound F582, 583A, DeltaF582, or F582Y forms of AR. Two-dimensional phospho-peptide mapping and analysis with a phospho-specific antibody revealed that mutant forms of AR that arrest in the subnuclear foci are hypophosphorylated at Ser81, a site that normally undergoes androgen-dependent phosphorylation. Our working model is that the subnuclear foci are sites where AR undergoes ligand-dependent engagement with GRIP-1 and CBP, a recruitment step that occurs before Ser81 phosphorylation and association with promoters of target genes.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号