首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1612篇
  免费   70篇
  国内免费   3篇
  2023年   4篇
  2022年   8篇
  2021年   16篇
  2020年   4篇
  2019年   17篇
  2018年   27篇
  2017年   21篇
  2016年   31篇
  2015年   40篇
  2014年   58篇
  2013年   81篇
  2012年   106篇
  2011年   104篇
  2010年   59篇
  2009年   77篇
  2008年   113篇
  2007年   106篇
  2006年   86篇
  2005年   105篇
  2004年   102篇
  2003年   102篇
  2002年   84篇
  2001年   28篇
  2000年   33篇
  1999年   20篇
  1998年   25篇
  1997年   17篇
  1996年   11篇
  1995年   8篇
  1994年   11篇
  1993年   12篇
  1992年   20篇
  1991年   24篇
  1990年   18篇
  1989年   10篇
  1988年   11篇
  1987年   6篇
  1986年   9篇
  1985年   8篇
  1984年   6篇
  1983年   10篇
  1982年   4篇
  1981年   4篇
  1980年   5篇
  1979年   7篇
  1978年   6篇
  1977年   4篇
  1976年   3篇
  1975年   6篇
  1973年   3篇
排序方式: 共有1685条查询结果,搜索用时 484 毫秒
21.
The ratio of the extracellular to the intracellular activityof carbonic anhydrase (CA) in cells of Chlorella ellipsoideaC-27, adapted to low levels of CO2 for 24 h (low-CO2 cells),was about one to one. Treatment of intact cells with PronaseP inactivated about one-half of the extracellular CA activitywithout affecting photosynthetic activity. The CA activity incell homogenates and in cell-wall ghosts liberated during celldivision was completely inactivated by the same treatment. Pretreatmentwith Glycosidase mix, Chitosanase and Macerozyme enhanced theinactivation of the CA activity in intact cells. These resultssuggest that extracellular CA is evenly distributed throughoutthe whole cell-wall region. The apparent K1/2 for dissolved inorganic carbon (DIC) in low-CO2cells doubled when extracellular CA was inactivated by treatmentwith Pronase P, but the K1/2 obtained was still one-half ofthat in high-CO2 cells. Photosynthetic 14CO2-fixation in low-CO2cells was enhanced by acetazolamide, whereas H14CO3-fixationwas suppressed. The results suggest that CO2 is a dominant substrateutilized by cells and that HCO3 is utilized after conversionto CO2. The present results show that both intracellular andextracellular CA contribute to the increase in affinity forDIC during photosynthesis in low-CO2 cells of Chlorella ellipsoideaC-27. (Received May 7, 1990; Accepted July 18, 1990)  相似文献   
22.
A histological study was undertaken to clarify seasonal changes in the spermatogenic epithelium of Japanese macaques. Testicular tissue samples were excised by biopsies from five adult laboratory-maintained males in mating and non-mating seasons. The samples were fixed with Bouin's solution, embedded in paraffin, and stained with PAS and hematoxylin. Microscopic observations on cross-sections of seminiferous tubules revealed that the seminiferous epithelium in the mating season was thicker than in the non-mating season. PAS-stained granules were found in some of the dark A-type spermatogonia, which significantly increased in the non-mating season. Spermatids of the steps preceding the appearance of the acrosomic cap in stages I to III were observed significantly more often than those in the step coinciding with the formation of the acrosomic cap in stage IV. In stage I, the ratio of mature spermatids or spermatozoa to immature spermatids in the mating season was higher than that in the non-mating season. These findings suggest that spermiogenesis, as well as spermatocytogenesis, is inhibited in the non-mating season.  相似文献   
23.
24.
25.
A method is described for the simultaneous determination of (+)- and (−)-homochlorcyclizine (HCZ) in human urine by high-performance liquid chromatography on a chiral stationary phase of ovomucoid-bonded silica. The pH of the buffer and organic modifier in the mobile phase markedly affected the chromatographic separation. A mobile phase of methanol—0.02 M acetate buffer (pH 4.7) (25:75, v/v) at a flow-rate of 1.0 ml/min was used for the urine assays. The ultraviolet absorption was monitored at 240 nm, and diphenhydramine was employed as the internal standard for the quantitation. (+)-HCZ, (−)-HCZ and the internal standard were eluted at retention times of 15, 25 and 8 min, respectively. The limit of determination for HCZ enantiomers was ca. 50 ng/ml of urine. One of the metabolites in human urine, which was a quaternary ammonium-linked glucuronide, could also be determined in a manner similar to unchanged HCZ after β-glucuronidase hydrolysis. A pharmacokinetic study was conducted with three healthy volunteers, who each received a single oral dose of racemic HCZ (20 mg). Distinct differences were found between the two enantiomers, particularly in the metabolic process, that is, the urinary excretion as (−)-HCZ-glucuronide within 48 h was ca. four times higher than that of the (+)-isomer. This method should be very useful for enantioselective pharmacokinetic studies of HCZ.  相似文献   
26.
Three thiamine-binding proteins of 17-19 kDa (STBP-I, II, and III) were purified from sesame seed (Sesamum indicum L.). Each of the proteins was composed of two subunits of equal molecular mass and each subunit consisted of a large polypeptide and a small polypeptide linked by a disulfide bond(s). They were rich in glutamic acid (or glutamine) and arginine. Their binding activities were optimal at neutral pH. They bound specifically free thiamine but not thiamine phosphates. STBP-I had higher affinity for thiamine than STBP-II or STBP-III. STBP-II and STBP-III bound one molecule of thiamine per molecule, and STBP-I bound 0.5 molecule. The amino acid composition and structure of the STPBs were similar to those of 2S storage proteins.  相似文献   
27.
Abstract: It has been previously reported that Alzheimer's amyloid β protein (Aβ) induces reactive astrocytosis in culture. In the present study, we found that Aβ potently inhibits cellular redox activity of cultured astrocytes, as determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide reduction assay. The following comparative studies revealed several differences between these two actions of Aβ on astrocytes. First, Aβ-induced reactive morphological change was suppressed by the presence of serum or thrombin, and Aβ inhibition of cellular redox activity was observed in either the presence or the absence of serum. Second, micromolar concentrations (10 µ M or more) were required for Aβ to induce reactive astrocytosis, whereas nanomolar concentrations (0.1–100 n M ) were sufficient to inhibit cellular redox activity. Third, the effect of micromolar Aβ was virtually irreversible, but nanomolar Aβ-induced inhibition of cellular redox activity was reversed by washing out Aβ. Furthermore, as it has been reported that Aβ neurotoxicity is mediated by reactive oxygen species, we also examined if similar mechanisms are involved in astrocytic response to Aβ. However, neither Aβ-induced morphological change nor inhibition of redox activity was blocked by antioxidants, suggesting that these effects are not caused by oxidative stress.  相似文献   
28.
Lactate metabolism in the perfused rat hindlimb.   总被引:2,自引:0,他引:2       下载免费PDF全文
M Shiota  S Golden    J Katz 《The Biochemical journal》1984,222(2):281-292
A preparation of isolated rat hindleg was perfused with a medium consisting of bicarbonate buffer containing Ficoll and fluorocarbon, containing glucose and/or lactate. The leg was electrically prestimulated to deplete partially muscle glycogen. The glucose was labelled uniformly with 14C and with 3H in positions 2, 5 or 6, and lactate uniformly with 14C and with 3H in positions 2 or 3. Glucose carbon was predominantly recovered in glycogen, and to a lesser extent in lactate. The 3H/14C ration in glycogen from [5-3H,U-14C]- and [6-3H,U-14C]-glucose was the same as in glucose. Nearly all the utilized 3H from [2-3H]glucose was recovered as water. Insulin increased glucose uptake and glycogen synthesis 3-fold. When the muscle was perfused with a medium containing 10 mM-glucose and 2 mM-lactate, there was little change in lactate concentration. 14C from lactate was incorporated into glycogen. There was a marked exponential decrease in lactate specific radioactivity, much greater with [3H]- than with [14C]-lactate. The 'apparent turnover' of [U-14C]lactate was 0.28 mumol/min per g of muscle, and those of [2-3H]- and [3-3H]-lactate were both about 0.7 mumol/min per g. With 10 mM-lactate as sole substrate, there was a net uptake of lactate, at a rate of about 0.15 mumol/min per g, and the apparent turnover of [U-14C]lactate was 0.3 mumol/min per g. The apparent turnover of [3H]lactate was 3-5 times greater. When glycogen synthesis was low (no prestimulation, no insulin), the incorporation of lactate carbon into glycogen exceeded that from glucose, but at high rates of glycogen deposition the incorporation of lactate carbon was much less than that of glucose. Lactate incorporation into glycogen was similar in fast-twitch white and fast-twitch red muscle, but was very low in slow-twitch red fibres. We find that (a) pyruvate in muscle is incorporated into glycogen without randomization of carbon, and synthesis is not inhibited by mercaptopicolinate or cycloserine; (b) there is extensive lactate turnover in the absence of net lactate uptake, and there is a large dilution of 14C-labelled lactate from endogenous supply; (c) there is extensive detritiation of [2-3H]- and [3-3H]-lactate in excess of 14C utilization.  相似文献   
29.
A method is described for the determination of urinary hippuric acid by high-performance liquid chromatography. The method used ethyl acetate extraction for partial clean-up of the urine. The separation was carried out on a reversed-phase column using 20% methanol in 0.01 M aqueous potassium phosphate containing 0.5% acetic acid as a mobile phase. The column effluent was monitored with a UV detector at 254 nm. Hippuric acid was separated from other normal urine constituents in less than 10 min. Metabolites of xylene and styrene did not interfere with the assay. Analytical recoveries from urine were excellent and peak height and concentration were linearly related.  相似文献   
30.
An enzyme that catalyzes the formation of 6-(D-erythro-1',2',3'-trihydroxypropyl)-7,8-dihydropterin triphosphate (D-erythrodihydroneopterin triphosphate) and formic acid from GTP has been purified about 3700-fold from homogenates of chicken liver. The molecular weight of the enzyme, D-erythrodihydroneopterin triphosphate synthetase (GTP cyclohydrolase), has been estimated to be 125,000 by gel filtration on Ultrogel AcA-34. The enzyme functions optimally between pH 8.0 and 9.2 and is considerably heat-stable. No cofactors or metal ions have been demonstrated to be required for activity; however, the reaction is strongly inhibited by Cu2+ and Hg2+. GTP is the most efficient substrate, with GDP being 1/17 as active and guanosine, GMP, and ATP being inactive. The Km for GTP has been found to be 14 micrometer. Although the overall reaction catalyzed by D-erythrodihydroneopterin triphosphate synthetase from chicken liver is identical with that from Escherichia coli GTP cyclohydrolase, immunological studies show no apparent homology between the two enzymes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号