首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2030篇
  免费   85篇
  国内免费   5篇
  2023年   5篇
  2022年   8篇
  2021年   18篇
  2020年   10篇
  2019年   22篇
  2018年   30篇
  2017年   25篇
  2016年   50篇
  2015年   47篇
  2014年   69篇
  2013年   112篇
  2012年   133篇
  2011年   124篇
  2010年   66篇
  2009年   91篇
  2008年   123篇
  2007年   120篇
  2006年   109篇
  2005年   128篇
  2004年   118篇
  2003年   114篇
  2002年   106篇
  2001年   45篇
  2000年   42篇
  1999年   39篇
  1998年   26篇
  1997年   25篇
  1996年   10篇
  1995年   15篇
  1994年   18篇
  1993年   15篇
  1992年   23篇
  1991年   20篇
  1990年   23篇
  1989年   30篇
  1988年   15篇
  1987年   22篇
  1986年   10篇
  1985年   17篇
  1984年   8篇
  1983年   15篇
  1982年   9篇
  1981年   9篇
  1980年   8篇
  1979年   14篇
  1978年   8篇
  1977年   2篇
  1976年   4篇
  1975年   11篇
  1973年   3篇
排序方式: 共有2120条查询结果,搜索用时 31 毫秒
81.
Macaranga myrmecophytes (ant-plants) provide their partner symbiotic ants (plant-ants) with food bodies as their main food, and they are protected by the plant-ants from herbivores. The amount of resource allocated to food bodies determines the plant-ant colony size and consequently determines the intensity of ant defense (anti-herbivore defense by plant-ants). As constraints in resource allocation change as plants grow, the plant-ant colony size is hypothesized to change with the ontogenesis of Macaranga myrmecophyte. To determine the ontogenetic change in the relative size of the plant-ant colony, we measured the dry weights of the whole plant-ant colony and all of the aboveground parts of trees at various ontogenetic stages for a myrmecophytic species (Macaranga beccariana) in a Bornean lowland tropical rain forest. Ant biomass increased as plant biomass increased. However, the rate of increase gradually declined, and the ant biomass appeared to reach a ceiling once trees began to branch. The ant/plant biomass ratio consistently decreased as plant biomass increased, with the rate of decrease gradually accelerating. We infer that the ontogenetic reduction in ant/plant biomass ratio is caused by an ontogenetic change in resource allocation to food rewards for ants related to the physiological changes accompanying the beginning of branching.  相似文献   
82.
In ferns, intra-gametophytic selfing occurs as a mode of reproduction where two gametes from the same gametophyte form a completely homozygous sporophyte. Intra-gametophytic selfing is considered to be prevented by lethal or deleterious recessive genes in several diploid species. In order to investigate the modes and tempo of selection acting different developmental stages, doubled haploids obtained from intra-gametophytic selfing within isolated gametophytes of a putative F1 hybrid between Osmunda japonica and O. lancea were analyzed with EST_derived molecular markers, and the distribution pattern of transmission ratio distortion (TRD) along linkage map was clarified. As the results, the markers with skewness were clustered in two linkage groups. For the two highly distorted regions, gametophytes and F2 population were also examined. The markers skewed towards O. japonica on a linkage group (LG_2) showed skewness also in gametophytes, and the TRD was generated in the process of spore formation or growth of gametophytes. Also, selection appeared to be operating in the gametophytic stage. The markers on other linkage group (LG_11) showed highest skewness towards O. lancea in doubled haploids, and it was suggested that the segregation of LG_11 were influenced by zygotic lethality or genotypic evaluation and that some deleterious recessive genes exist in LG_11 and reduce the viability of homozygotes with O. japonica alleles. It is very likely that a region of LG_11were responsible for the low frequencies of intra-gametophytic selfing in O. japonica.  相似文献   
83.
Reports indicate that leaf onset (leaf flush) of deciduous trees in cool‐temperate ecosystems is occurring earlier in the spring in response to global warming. In this study, we created two types of phenology models, one driven only by warmth (spring warming [SW] model) and another driven by both warmth and winter chilling (parallel chill [PC] model), to predict such phenomena in the Japanese Islands at high spatial resolution (500 m). We calibrated these models using leaf onset dates derived from satellite data (Terra/MODIS) and in situ temperature data derived from a dense network of ground stations Automated Meteorological Data Acquisition System. We ran the model using future climate predictions created by the Japanese Meteorological Agency's MRI‐AGCM3.1S model. In comparison to the first decade of the 2000s, our results predict that the date of leaf onset in the 2030s will advance by an average of 12 days under the SW model and 7 days under the PC model throughout the study area. The date of onset in the 2090s will advance by 26 days under the SW model and by 15 days under the PC model. The greatest impact will occur on Hokkaido (the northernmost island) and in the central mountains.  相似文献   
84.
The cytochrome P450 (CYP) 1–3 families are involved in xenobiotic metabolism, and are expressed primarily in the liver. Ostriches (Struthio camelus) are members of Palaeognathae with the earliest divergence from other bird lineages. An understanding of genes coding for ostrich xenobiotic metabolizing enzyme contributes to knowledge regarding the xenobiotic metabolisms of other Palaeognathae birds. We investigated CYP1–3 genes expressed in female ostrich liver using a next-generation sequencer. We detected 10 CYP genes: CYP1A5, CYP2C23, CYP2C45, CYP2D49, CYP2G19, CYP2W2, CYP2AC1, CYP2AC2, CYP2AF1, and CYP3A37. We compared the gene expression levels of CYP1A5, CYP2C23, CYP2C45, CYP2D49, CYP2G19, CYP2AF1, and CYP3A37 in ostrich liver and determined that CYP2G19 exhibited the highest expression level. The mRNA expression level of CYP2G19 was approximately 2–10 times higher than those of other CYP genes. The other CYP genes displayed similar expression levels. Our results suggest that CYP2G19, which has not been a focus of previous bird studies, has an important role in ostrich xenobiotic metabolism.  相似文献   
85.
A serine protease with caspase- and legumain-like activities from basidiocarps of the edible basidiomycete Flammulina velutipes was characterized. The protease was purified to near homogeneity by three steps of chromatography using acetyl-Tyr-Val-Ala-Asp-4-methylcoumaryl-7-amide (Ac-YVAD-MCA) as a substrate. The enzyme was termed FvSerP (F. velutipes serine protease). This enzyme activity was completely inhibited by the caspase-specific inhibitor, Ac-YVAD-CHO, as well as moderately inhibited by serine protease inhibitors. Based on the N-terminal sequence, the cDNA of FvSerP was identified. The deduced protease sequence was a peptide composed of 325 amino acids with a molecular mass of 34.5 kDa. The amino acid sequence of FvSerP showed similarity to neither caspases nor to the plant subtilisin-like serine protease with caspase-like activity called saspase. FvSerP shared identity to the functionally unknown genes from class of Agaricomycetes, with similarity to the peptidase S41 domain of a serine protease. It was thus concluded that this enzyme is likely a novel serine protease with caspase- and legumain-like activities belonging to the peptidase S41 family and distributed in the class Agaricomycetes. This enzyme possibly functions in autolysis, a type of programmed cell death that occurs in the later stages of development of basidiocarps with reference to their enzymatic functions.  相似文献   
86.

Background and Purpose

The major obstacles to treatment of pancreatic cancer are the highly invasive capacity and resistance to chemo- and radiotherapy. Glycogen synthase kinase 3β (GSK3β) regulates multiple cellular pathways and is implicated in various diseases including cancer. Here we investigate a pathological role for GSK3β in the invasive and treatment resistant phenotype of pancreatic cancer.

Methods

Pancreatic cancer cells were examined for GSK3β expression, phosphorylation and activity using Western blotting and in vitro kinase assay. The effects of GSK3β inhibition on cancer cell survival, proliferation, invasive ability and susceptibility to gemcitabine and radiation were examined following treatment with a pharmacological inhibitor or by RNA interference. Effects of GSK3β inhibition on cancer cell xenografts were also examined.

Results

Pancreatic cancer cells showed higher expression and activity of GSK3β than non-neoplastic cells, which were associated with changes in its differential phosphorylation. Inhibition of GSK3β significantly reduced the proliferation and survival of cancer cells, sensitized them to gemcitabine and ionizing radiation, and attenuated their migration and invasion. These effects were associated with decreases in cyclin D1 expression and Rb phosphorylation. Inhibition of GSK3β also altered the subcellular localization of Rac1 and F-actin and the cellular microarchitecture, including lamellipodia. Coincident with these changes were the reduced secretion of matrix metalloproteinase-2 (MMP-2) and decreased phosphorylation of focal adhesion kinase (FAK). The effects of GSK3β inhibition on tumor invasion, susceptibility to gemcitabine, MMP-2 expression and FAK phosphorylation were observed in tumor xenografts.

Conclusion

The targeting of GSK3β represents an effective strategy to overcome the dual challenges of invasiveness and treatment resistance in pancreatic cancer.  相似文献   
87.
88.
Saccharomyces cerevisiae produces two different α-glucosidases, Glucosidase 1 (Gls1) and Glucosidase 2 (Gls2), which are responsible for the removal of the glucose molecules from N-glycans (Glc3Man9GlcNAc2) of glycoproteins in the endoplasmic reticulum. Whether any additional α-glucosidases playing a role in catabolizing the glucosylated N-glycans are produced by this yeast, however, remains unknown. We report herein on a search for additional α-glucosidases in S. cerevisiae. To this end, the precise structures of cytosolic free N-glycans (FNGs), mainly derived from the peptide:N-glycanase (Png1) mediated deglycosylation of N-glycoproteins were analyzed in the endoplasmic reticulum α-glucosidase-deficient mutants. 12 new glucosylated FNG structures were successfully identified through 2-dimentional HPLC analysis. On the other hand, non-glucosylated FNGs were not detected at all under any culture conditions. It can therefore be safely concluded that no catabolic α-glucosidases acting on N-glycans are produced by this yeast.  相似文献   
89.
90.
TTHA0829 from Thermus thermophilus HB8 has a molecular mass of 22,754 Da and is composed of 210 amino acid residues. The expression of TTHA0829 is remarkably elevated in the latter half of logarithmic growth phase. TTHA0829 can form either a tetrameric or dimeric structure, and main-chain folding provides an N-terminal cystathionine-β-synthase (CBS) domain and a C-terminal aspartate-kinase chorismate-mutase tyrA (ACT) domain. Both CBS and ACT are regulatory domains to which a small ligand molecule can bind. The CBS domain is found in proteins from organisms belonging to all kingdoms and is observed frequently as two or four tandem copies. This domain is considered as a small intracellular module with a regulatory function and is typically found adjacent to the active (or functional) site of several enzymes and integral membrane proteins. The ACT domain comprises four β-strands and two α-helices in a βαββαβ motif typical of intracellular small molecule binding domains that help control metabolism, solute transport and signal transduction. We discuss the possible role of TTHA0829 based on its structure and expression pattern. The results imply that TTHA0829 acts as a cell-stress sensor or a metabolite acceptor.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号