首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   598篇
  免费   46篇
  2022年   3篇
  2019年   4篇
  2018年   8篇
  2017年   5篇
  2016年   6篇
  2015年   12篇
  2014年   11篇
  2013年   34篇
  2012年   23篇
  2011年   25篇
  2010年   14篇
  2009年   20篇
  2008年   16篇
  2007年   16篇
  2006年   24篇
  2005年   21篇
  2004年   26篇
  2003年   28篇
  2002年   21篇
  2001年   21篇
  2000年   25篇
  1999年   26篇
  1998年   6篇
  1997年   6篇
  1996年   9篇
  1995年   6篇
  1994年   7篇
  1993年   8篇
  1992年   17篇
  1991年   22篇
  1990年   15篇
  1989年   12篇
  1988年   18篇
  1987年   7篇
  1986年   10篇
  1985年   13篇
  1984年   9篇
  1983年   15篇
  1982年   3篇
  1981年   5篇
  1980年   11篇
  1979年   11篇
  1978年   5篇
  1976年   3篇
  1975年   6篇
  1973年   7篇
  1970年   2篇
  1969年   2篇
  1968年   2篇
  1967年   3篇
排序方式: 共有644条查询结果,搜索用时 93 毫秒
141.
Factor IX Amagasaki (AMG) is a naturally occurring mutant of factor IX having essentially no coagulant activity, even though normal levels of antigen are detected in plasma. Factor IX AMG was purified from the patient's plasma by immunoaffinity chromatography with an anti-factor IX monoclonal antibody column. Factor IX AMG was cleaved normally by factor VIIa-tissue factor complex, yielding a two-chain factor IXa. Amino acid composition and sequence analysis of one of the tryptic peptides isolated from factor IX AMG revealed that Gly-311 had been replaced by Glu. We identified a one-base substitution of guanine to adenine in exon VIII by amplifying exon VIII using the polymerase chain reaction method and sequencing the product. This base mutation also supported the replacement of Gly-311 by Glu. In the purified system, factor IXa AMG did not activate factor X in the presence of factor VIII, phospholipids, and Ca2+, and no esterase activity toward Z-Arg-p-nitrobenzyl ester was observed. The model building of the serine protease domain of factor IXa suggests that the Gly-311----Glu exchange would disrupt the specific conformational state in the active site environment, resulting in the substrate binding site not forming properly. This is the first report to show the experimental evidence for importance of a highly conserved Gly-142 (chymotrypsinogen numbering) located in the catalytic site of mammalian serine proteases so far known.  相似文献   
142.
The characteristics of glycosaminoglycan (GAG) synthesis in normal and transformed human endothelial cells were analyzed by the incorporation of [3H]glucosamine and by the activities of GAG synthetases. The GAG synthesized by normal endothelial cells consisted of mainly heparan sulfate (HS) and chondroitin sulfate/dermatan sulfate but little hyaluronic acid (HA) (less than 1%). The characteristics of GAG synthesis by normal cells reflected the synthetic enzyme activities for each individual GAG: the activity of HA synthetase was very low. In spite of this, the activity of HA synthetase inhibitor, induced in growth-retarded fibroblasts with low HA synthetase activity (Matuoka et al. (1987 J. Cell Biol., 104, 1105-1115), was very low in endothelial cells. In contrast to normal cells, transformed endothelial (ECV304) cells synthesized mainly HA (62% of total GAGs). These findings suggest that the regulatory system of GAG metabolism is cell type specific, and that transformation is accompanied by high levels of HA synthesis in endothelial cells.  相似文献   
143.
A cytokinin binding protein complex (CBP130) has been purified from tobacco leaves (Nicotiana sylvestris). It contains two protein species of 57 and 36 kDa (CBP57 and CBP36). The cDNAs encoding CBP57 have been isolated from a tobacco cDNA library. Their predicted amino acid sequences showed significant homology between CBP57 and S-adenosyl-L-homocysteine (SAH) hydrolase, which catalyzes the reversible hydrolysis of SAH, a methyltransferase inhibitor. A combination of gel filtration an western blot analysis revealed that both CBP57 and benzyladenine (BA)-binding activity were eluted at a peak of 130 kDa. A purified CBP130 fraction contains SAH hydrolase activity. We discuss possible CBP57 as a cytokinin receptor subunit and its possible role as a regulator of methylation.  相似文献   
144.
The outline of the adult wing of lepidopteran insects (butterflies and moths) emerges as a result of disappearance of a group of cells at the periphery of the pupal wing. Histological observation of the pupal wing of Pieris rapae showed that, just after apolysis of the wing epithelium from the pupal cuticle, there occurs a rapid and localized decrease of the number of cells at the periphery of the wing. This decrease occurs through cell death, which lasts 1–1.5 days at 20°C. Dying cells lose contact with the neighbouring cells and show condensation of chromatin and cytoplasm. They then appear to be phagocytosed by neighbouring epithelial cells or discharged through the basal surface of the epithelium into the lumen within the wing and taken up by phagocytes. Fragmentation of DNA in the nuclei was detected in the dead cells or their debris. These results indicate that programmed cell death in the lepidopteran wing proceeds through a mechanism closely similar to that of apoptosis in the vertebrate.  相似文献   
145.
Fucosylation is an important type of glycosylation involved in cancer, and fucosylated proteins could be employed as cancer biomarkers. Previously, we reported that fucosylated N-glycans on haptoglobin in the sera of patients with pancreatic cancer were increased by lectin-ELISA and mass spectrometry analyses. However, an increase in fucosylated haptoglobin has been reported in various types of cancer. To ascertain if characteristic fucosylation is observed in each cancer type, we undertook site-specific analyses of N-glycans on haptoglobin in the sera of patients with five types of operable gastroenterological cancer (esophageal, gastric, colon, gallbladder, pancreatic), a non-gastroenterological cancer (prostate cancer) and normal controls using ODS column LC-ESI MS. Haptoglobin has four potential glycosylation sites (Asn184, Asn207, Asn211, Asn241). In all cancer samples, monofucosylated N-glycans were significantly increased at all glycosylation sites. Moreover, difucosylated N-glycans were detected at Asn 184, Asn207 and Asn241 only in cancer samples. Remarkable differences in N-glycan structure among cancer types were not observed. We next analyzed N-glycan alditols released from haptoglobin using graphitized carbon column LC-ESI MS to identify the linkage of fucosylation. Lewis-type and core-type fucosylated N-glycans were increased in gastroenterological cancer samples, but only core-type fucosylated N-glycan was relatively increased in prostate cancer samples. In metastatic prostate cancer, Lewis-type fucosylated N-glycan was also increased. These data suggest that the original tissue/cell producing fucosylated haptoglobin is different in each cancer type and linkage of fucosylation might be a clue of primary lesion, thereby enabling a differential diagnosis between gastroenterological cancers and non-gastroenterological cancers.  相似文献   
146.
Various kinds of in vitro culture systems of tissues and organs have been developed, and applied to understand multicellular systems during embryonic organogenesis. In the research field of feather bud development, tissue recombination assays using an intact epithelial tissue and mesenchymal tissue/cells have contributed to our understanding the mechanisms of feather bud formation and development. However, there are few methods to generate a skin and its appendages from single cells of both epithelium and mesenchyme. In this study, we have developed a bioengineering method to reconstruct an embryonic dorsal skin after completely dissociating single epithelial and mesenchymal cells from chick skin. Multiple feather buds can form on the reconstructed skin in a single row in vitro. The bioengineered feather buds develop into long feather buds by transplantation onto a chorioallantoic membrane. The bioengineered bud sizes were similar to those of native embryo. The number of bioengineered buds was increased linearly with the initial contact length of epithelial and mesenchymal cell layers where the epithelial‐mesenchymal interactions occur. In addition, the bioengineered bud formation was also disturbed by the inhibition of major signaling pathways including FGF (fibroblast growth factor), Wnt/β‐catenin, Notch and BMP (bone morphogenetic protein). We expect that our bioengineering technique will motivate further extensive research on multicellular developmental systems, such as the formation and sizing of cutaneous appendages, and their regulatory mechanisms.  相似文献   
147.
A cell suspension culture, prepared fromPerilla frutescens var.crispa callus induced by Murashige and Skoog (1962) medium containing 2,4-dichlorophenoxyacetic acid (2,4-D, 1.0 ml/l) and kinetin (0.1 mg/l), contained caffeic acid derivatives as the phenolic components. Fresh and dry weights of the cells increased exponentially for about 11 days after transfer to a fresh medium. The contents of caffeic acid and protein also reached a maximum on the 11th day, but α-amino nitrogen phenylalanine and tyrosine continued to increase in amount until the 20th to 23rd day. Caffeic acid formation in the cells was increased by lowering the concentration of 2,4-D. The administration ofl-2-aminooxy-3-phenylpropionic acid (l-AOPP), 2-aminooxyacetic acid (AOA) andN-(phosphonomethyl)glycine (glyphosate) to the cells inhibited caffeic acid formation to a large extent. An 80% inhibition of caffeic acid formation was caused by 10−4Ml-AOPP whereas phenylalanine and tyrosine contents of the cells became 7.5 and 2.3 times higher at thisl-AOPP concentration than those in the control. An 85% inhibition of caffeic acid formation was achieved at 10−3M glyphosate concentration, while 10−3M AOA inhibited caffeic acid formation by 95% and also growth rate by 80%. The influence of inhibitors on caffeic acid formation is discussed in relation to the level of α-amino nitrogen, particularly aromatic amino acids, in the cell suspension cultures.  相似文献   
148.
149.
ST 13 cells are a clonal line of murine fibroblasts that are capable of differentiating into adipocyte-like cells invitro. When the cells were maintained as a confluent monolayer, they began to accumulate lipid droplets and to exhibit a rapid increase of insulin binding activity. Tunicamycin, a specific inhibitor of dolichol-mediated protein glycosylation, blocked this adipose conversion without affecting cell growth and total protein synthesis. The inhibitory effect of tunicamycin was dose-dependent and reversible. Enhancement of the incorporation of [14C]acetate into triglyceride fraction accompanying the adipose conversion was completely inhibited by tunicamycin, whereas the incorporation into phospholipid fraction was only partially affected. The insulin binding activity increased about 10-fold during differentiation, but was completely suppressed in tunicamycin-treated cells.  相似文献   
150.
The AUG- and MS2 RNA-dependent fMet-tRNA binding to 30S ribosomal subunits was stimulated by spermidine with any individual or combination of initiation factors capable of participating in the formation of an initiation complex. When 70S ribosomes were used instead of 30S ribosomal subunits, IF-3 was necessary for spermidine stimulation of the complex formation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号