首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61篇
  免费   2篇
  国内免费   2篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   3篇
  2012年   5篇
  2011年   4篇
  2010年   4篇
  2009年   3篇
  2008年   7篇
  2007年   10篇
  2006年   4篇
  2003年   2篇
  2002年   8篇
  2001年   3篇
  1999年   1篇
  1997年   2篇
  1992年   2篇
排序方式: 共有65条查询结果,搜索用时 46 毫秒
11.
12.
Aim Geomorphic evolution of river basins can shape the structure and diversity of aquatic communities, but understanding the biological significance of basin evolution can be challenging in semi‐arid regions with ephemeral or endorheic conditions and complex drainage configurations such as the Sierra Madre Occidental (SMO) in North America. In this study, we characterized range‐wide patterns of genetic variation in the Mexican stoneroller (Campostoma ornatum) to infer how orogenic and erosional influences on river basin connectivity have given rise to the diverse and largely endemic freshwater communities across the SMO region. Location Twelve drainage basins across northern Mexico and the south‐western United States, centred on the SMO. Methods  We collected 202 specimens from 98 localities across the range of C. ornatum. We performed phylogenetic analyses of DNA sequences from one mitochondrial (cytochrome b) and one nuclear (intron S7) gene. Phylogenetic trees were estimated for each data set using maximum likelihood and Bayesian inference. Results Phylogenetic analyses consistently resolved a monophyletic C. ornatum composed of multiple evolutionary lineages within two markedly divergent clades that differentiate northern drainages from southern drainages in the SMO region. Within‐clade patterns of divergence corresponded to fine‐scale geographic structure within and among SMO drainage basins. However, the geographic distribution of evolutionary lineages within the northern and southern clades did not always correspond to the geographic configuration of drainage basins. Some subclades encompassed multiple drainages, and individuals from a single drainage were sometimes recovered in multiple subclades. Main conclusions Our findings indicate that a common ancestor of Mexican Campostoma is likely to have entered north‐west Mexico through an ancient Rio Grande system that extended as far south as the Rio Nazas and Rio Aguanaval. The geographic orientation of the two strongly divergent clades recovered within C. ornatum provides evidence of long‐standing isolation of southern basins from northern basins within the ancestral Rio Grande system, possibly due to the combined influence of tectonic events and increasing regional aridity. Geographic patterns of genetic variation also provide evidence of range expansion from Atlantic to Pacific drainages due to drainage evolution and river capture events, as well as further inter‐basin exchange via more recent headwater capture events, hydrological connections and possible anthropogenic introductions.  相似文献   
13.
Despite many efforts to resolve evolutionary relationships among major clades of Cyprinidae, some nodes have been especially problematic and remain unresolved. In this study, we employ four nuclear gene fragments (3.3 kb) to infer interrelationships of the Cyprinidae.A reconstruction of the phylogenetic relationships within the family using maximum parsimony, maximum likelihood, and Bayesian analyses is presented. Among the taxa within the monophyletic Cyprinidae, Rasborinae is the basal-most lineage; Cyprinine is sister to Leuciscine. The monophyly for the subfamilies Gobioninae, Leuciscinae and Acheilognathinae were resolved with high nodal support. Although our results do not completely resolve relationships within Cyprinidae, this study presents novel and significant findings having major implications for a highly diverse and enigmatic clade of East-Asian cyprinids. Within this monophyletic group five closely-related subgroups are identified. Tinca tinca, one of the most phylogenetically enigmatic genera in the family, is strongly supported as having evolutionary affinities with this East-Asian clade; an established yet remarkable association because of the natural variation in phenotypes and generalized ecological niches occupied by these taxa.Our results clearly argue that the choice of partitioning strategies has significant impacts on the phylogenetic reconstructions, especially when multiple genes are being considered. The most highly partitioned model (partitioned by codon positions within genes) extracts the strongest phylogenetic signals and performs better than any other partitioning schemes supported by the strongest 2Δln Bayes factor. Future studies should include higher levels of taxon sampling and partitioned, model-based analyses.  相似文献   
14.
The biogeography of the mega‐diverse, freshwater, and globally distributed Otophysi has received considerable attention. This attraction largely stems from assumptions as to their ancient origin, the clade being almost exclusively freshwater, and their suitability as to explanations of trans‐oceanic distributions. Despite multiple hypotheses explaining present‐day distributions, problems remain, precluding more parsimonious explanations. Underlying previous hypotheses are alternative phylogenies for Otophysi, uncertainties as to temporal diversification and assumptions integral to various explanations. We reexamine the origin and early diversification of this clade based on a comprehensive time‐calibrated, molecular‐based phylogenetic analysis and event‐based approaches for ancestral range inference of lineages. Our results do not corroborate current phylogenetic classifications of otophysans. We demonstrate Siluriformes are never sister to Gymnotiformes and Characiformes are most likely nonmonophyletic. Divergence time estimates specify a split between Cypriniformes and Characiphysi with the fragmentation of Pangea. The early diversification of characiphysans either predated, or was contemporary with, the separation of Africa and South America, and involved a combination of within‐ and between‐continental divergence events for these lineages. The intercontinental diversification of siluroids and characoids postdated major intercontinental tectonic fragmentations (<90 Mya). Post‐tectonic drift dispersal events are hypothesized to account for their current distribution patterns.  相似文献   
15.
The family Cyprinidae is the largest freshwater fish group in the world, including over 200 genera and 2100 species. The phylogenetic relationships of major clades within this family are simply poorly understood, largely because of the overwhelming diversity of the group; however, several investigators have advanced different hypotheses of relationships that pre- and post-date the use of shared-derived characters as advocated through phylogenetic systematics. As expected, most previous investigations used morphological characters. Recently, mitochondrial DNA (mtDNA) sequences and combined morphological and mtDNA investigations have been used to explore and advance our understanding of species relationships and test monophyletic groupings. Limitations of these studies include limited taxon sampling and a strict reliance upon maternally inherited mtDNA variation. The present study is the first endeavor to recover the phylogenetic relationships of the 12 previously recognized monophyletic subfamilies within the Cyprinidae using newly sequenced nuclear DNA (nDNA) for over 50 species representing members of the different previously hypothesized subfamily and family groupings within the Cyprinidae and from other cypriniform families as outgroup taxa. Hypothesized phylogenetic relationships are constructed using maximum parsimony and Basyesian analyses of 1042 sites, of which 971 sites were variable and 790 were phylogenetically informative. Using other appropriate cypriniform taxa of the families Catostomidae (Myxocyprinus asiaticus), Gyrinocheilidae (Gyrinocheilus aymonieri), and Balitoridae (Nemacheilus sp. and Beaufortia kweichowensis) as outgroups, the Cyprinidae is resolved as a monophyletic group. Within the family the genera Raiamas, Barilius, Danio, and Rasbora, representing many of the tropical cyprinids, represent basal members of the family. All other species can be classified into variably supported and resolved monophyletic lineages, depending upon analysis, that are consistent with or correspond to Barbini and Leuciscini. The Barbini includes taxa traditionally aligned with the subfamily Cyprininae sensu previous morphological revisionary studies by Howes (Barbinae, Labeoninae, Cyprininae and Schizothoracinae). The Leuciscini includes six other subfamilies that are mainly divided into three separate lineages. The relationships among genera and subfamilies are discussed as well as the possible origins of major lineages.  相似文献   
16.
A recent phylogenetic study based on morphological, biochemical and early life history characters resurrected the genus Scartomyzon (jumprock suckers, c . eight−10 species) from Moxostoma (redhorse suckers, c . 10–11 species) and advanced the understanding of relationships among species in these two genera, and the genealogical affinities of these genera with other evolutionary lineages within the tribe Moxostomatini in the subfamily Catostominae. To further examine phylogenetic relationships among moxostomatin suckers, the complete mitochondrial (mt) cytochrome b gene was sequenced from all species within this tribe and representative outgroup taxa from the Catostomini and other catostomid subfamilies. Phylogenetic analysis of gene sequences yielded two monophyletic clades within Catostominae: Catostomus + Deltistes + Xyrauchen + Erimyzon + Minytrema and Moxostoma + Scartomyzon + Hypentelium + Thoburnia . Within the Moxostomatini, Thoburnia was either unresolved or polyphyletic; Thoburnia atripinnis was sister to a monophyletic Hypentelium . In turn, this clade was sister to a monophyletic clade containing Scartomyzon and Moxostoma . Scartomyzon was never resolved as monophyletic, but was always recovered as a polyphyletic group embedded within Moxostoma , rendering the latter genus paraphyletic if ' Scartomyzon ' continues to be recognized. Relationships among lineages within the Moxostoma and' Scartomyzon 'clade were resolved as a polytomy. To better reflect phylogenetic relationships resolved in this analysis, the following changes to the classification of the tribe Moxostomatini are proposed: subsumption of' Scartomyzon 'into Moxostoma ; restriction of the tribe Moxostomatini to Moxostoma ; resurrect the tribe Erimyzonini, containing Erimyzon and Minytrema , classified as incertae sedis within Catostominae; retain the tribe Thoburniini.  相似文献   
17.
The crevice spawning behavior of Diondadichroma is described for the first time, andcompared to spawning behavior in the genusCyprinella. The evolution of crevice spawningwith respect to other spawning behaviors ofNorth American shiners is examined usingexplicitly phylogenetic hypotheses for thisgroup. We present evidence that broadcastspawning is plesiomorphic and all otherspawning behaviors are independently derived. There is evidence that crevice spawning hasevolved independently at least three timeswithin the shiner clade. There is no supportfor an evolutionary transition between eggclustering and crevice spawning. Nestassociation, spawning on habitat prepared byother species, has also evolved multiple timeswithin this clade. Evolution of spawning inshiners is best described by phylogeneticstasis with several independent origins ofspecialized spawning stragegies.  相似文献   
18.
The Cypriniformes comprise approximately 4,200 species accounting for 25% of the diversity of all freshwater fish, which is widely distributed across the world's continents except Antarctica, South America, and Australia. The highest species diversity is found in Southeastern Asia. Despite its remarkable species diversity and broad-scale geographic patterns of distribution, the evolutionary history of this major freshwater fish group remains largely unresolved. To gain insight of the evolutionary history of Cypriniformes, we present a phylogeny of this group using 1 mitochondrial gene and 15 nuclear genes comprising a total of14,061 bp. Bayesian inference using all gene fragments yielded a well resolved phylogeny, which is mostly consistent with topologies obtained from Maximum Likelihood analyses. Our results further confirmed the monophyly of Cypriniformes and seven constituent subclades including Cyprinidae, Catostomidae, Gyrinocheilidae, Balitoridae, Cobitidae, Nemacheilidae, and Botiidae. Bayesian divergence time analysis indicated that the origin of the Cypriniformes was about 193 Mya during the early Jurassic, coinciding with the onset of the Pangaea breakup. The basal divergence of Cypriniformes is 154 Mya during the late Jurassic. Our findings from molecular divergence and biogeographical analysis indicate the most likely initial geographical range of the ancient Cypriniformes was both East and South Asia(Southeastern area of Mesozoic Laurasia). Moreover, the burst in species diversity in Cyprinidae afforded by the nearly worldwide colonization is possibly in response to the plasticity of pharyngeal dentition. The present study demonstrates that the Cypriniformes was about 193 Mya during the early Jurassic,coinciding with the onset of the Pangaea breakup. The plasticity of pharyngeal dentition of cyprinids might contribute to the burst and radiation of this lineage. The phylogenetic and biogeographic analyses in this study help to improve our understanding of the evolutionary history of this diverse and important freshwater fish group.  相似文献   
19.
Historical ecological studies provide information about the origins of species in an area and the origins of traits characterizing the interactions between those species and their environment. Incorporating this evolutionary information into conservation policies will broaden the base of options for making effective decisions about the preservation of biodiversity.  相似文献   
20.
Burrowing benthic animals belonging to the same functional group may produce species-specific effects on microbially mediated nitrogen (N) processes depending upon different ecological traits. We investigated the effects of two tube-dwelling organisms, amphipods (Corophium insidiosum) and chironomid larvae (Chironomus plumosus), on benthic N cycling in bioturbated estuarine sediments. Aims of this work were to analyze the interactions among burrowers and N-related microbial processes in two distinct sedimentary environments colonized by benthic animals with different ecological traits. We hypothesized higher rates of nitrification and higher coupled nitrification–denitrification in sediments with C. insidiosum due to continuous ventilation rates. We expected higher denitrification of water column nitrate in sediments with C. plumosus due to lower and intermittent ventilation activity and lower oxygen levels in burrows. To this purpose, we combined process–specific (nitrification and denitrification) with net N flux measurements in intact and reconstructed sediments. Sediments with C. insidiosum had higher rates of oxygen demand and of potential nitrification and higher concentration of pore water NH4+ as compared to sediments with C. plumosus. Sediments with both species displayed comparable net N2 fluxes, mostly sustained by respiration of water column NO3? in sediments with chironomid larvae and by NO3? produced within sediments in sediments with corophiid amphipods. Corophium insidiosum stimulated nitrification nearly 15-fold more as compared to C. plumosus. Overall, our results demonstrate that sediments with burrowing fauna may display similar rates of denitrification, but underlying mechanisms may deeply vary and be species-specific.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号