首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1479篇
  免费   112篇
  1591篇
  2024年   4篇
  2023年   16篇
  2022年   25篇
  2021年   55篇
  2020年   26篇
  2019年   34篇
  2018年   42篇
  2017年   30篇
  2016年   44篇
  2015年   83篇
  2014年   73篇
  2013年   102篇
  2012年   126篇
  2011年   134篇
  2010年   69篇
  2009年   79篇
  2008年   103篇
  2007年   79篇
  2006年   77篇
  2005年   62篇
  2004年   53篇
  2003年   48篇
  2002年   45篇
  2001年   13篇
  2000年   12篇
  1999年   8篇
  1998年   13篇
  1997年   22篇
  1996年   6篇
  1995年   7篇
  1994年   8篇
  1993年   4篇
  1992年   9篇
  1990年   3篇
  1989年   6篇
  1988年   6篇
  1987年   5篇
  1986年   3篇
  1985年   4篇
  1981年   2篇
  1980年   4篇
  1979年   7篇
  1978年   2篇
  1976年   4篇
  1975年   2篇
  1974年   3篇
  1973年   5篇
  1972年   6篇
  1970年   3篇
  1969年   2篇
排序方式: 共有1591条查询结果,搜索用时 15 毫秒
151.
The spontaneously hypertensive rat (SHR) is a model of cardiomyopathy characterized by a restricted use of exogenous long-chain fatty acid (LCFA) for energy production. The aims of the present study were to document the functional and metabolic response of the SHR heart under conditions of increased energy demand and the effects of a medium-chain fatty acid (MCFA; octanoate) supplementation in this situation. Hearts were perfused ex vivo in a working mode with physiological concentrations of substrates and hormones and subjected to an adrenergic stimulation (epinephrine, 10 microM). (13)C-labeled substrates were used to assess substrate selection for energy production. Compared with control Wistar rat hearts, SHR hearts showed an impaired response to the adrenergic stimulation as reflected by 1) a smaller increase in contractility and developed pressure, 2) a faster decline in the aortic flow, and 3) greater cardiac tissue damage (lactate dehydrogenase release: 1,577 +/- 118 vs. 825 +/- 44 mU/min, P < 0.01). At the metabolic level, SHR hearts presented 1) a reduced exogenous LCFA contribution to the citric acid cycle flux (16 +/- 1 vs. 44 +/- 4%, P < 0.001) and an enhanced contribution of endogenous substrates (20 +/- 4 vs. 1 +/- 4%, P < 0.01); and 2) an increased lactate production from glycolysis, with a greater lactate-to-pyruvate production ratio. Addition of 0.2 mM octanoate reduced lactate dehydrogenase release (1,145 +/- 155 vs. 1,890 +/- 89 mU/min, P < 0.001) and increased exogenous fatty acid contribution to energy metabolism (23.7 +/- 1.3 vs. 15.8 +/- 0.8%, P < 0.01), which was accompanied by an equivalent decrease in unlabeled endogenous substrate contribution, possibly triglycerides (11.6 +/- 1.5 vs. 19.0 +/- 1.2%, P < 0.01). Taken altogether, these results demonstrate that the SHR heart shows an impaired capacity to withstand an acute adrenergic stress, which can be improved by increasing the contribution of exogenous fatty acid oxidation to energy production by MCFA supplementation.  相似文献   
152.
We present a strategy for generating and analyzing comprehensive genetic-interaction maps, termed E-MAPs (epistatic miniarray profiles), comprising quantitative measures of aggravating or alleviating interactions between gene pairs. Crucial to the interpretation of E-MAPs is their high-density nature made possible by focusing on logically connected gene subsets and including essential genes. Described here is the analysis of an E-MAP of genes acting in the yeast early secretory pathway. Hierarchical clustering, together with novel analytical strategies and experimental verification, revealed or clarified the role of many proteins involved in extensively studied processes such as sphingolipid metabolism and retention of HDEL proteins. At a broader level, analysis of the E-MAP delineated pathway organization and components of physical complexes and illustrated the interconnection between the various secretory processes. Extension of this strategy to other logically connected gene subsets in yeast and higher eukaryotes should provide critical insights into the functional/organizational principles of biological systems.  相似文献   
153.
Diphtheria toxin A-chain (DT-A) is a potent inhibitor of protein synthesis. As little as a single molecule of DT-A can result in cell death. DT-A gene driven by a tissue-specific promoter is used to achieve genetic ablation of a particular cell lineage. However, this transgenic approach often results in aberrant depletion of unrelated cells. To avoid this, we established a method for specific depletion of a cell population by controlled expression of the DT-A gene via the Cre-loxP system. We produced five transgenic mice carrying CETD construct containing loxP-flanked enhanced green fluorescent protein (EGFP) cDNA and the DT-A gene. Transfection of primary cultured cells derived from CETD transgenic fetus with Cre expression plasmid resulted in extensive cell loss, as expected. Bigenic (double transgenic) offspring obtained by crossbreeding between CETD and MNCE transgenic mice in which Cre expression is controlled by the myelin basic protein (MBP) promoter exhibited embryonic lethality, suggesting expression of Cre at embryonic stages. Intravenous injection of Cre expression vector to CETD mice led to generation of glomerular lesions, probably due to predominant depletion of glomerular epithelial cells. This Cre-loxP-based cell ablation technology is powerful and convenient method of generating mice lacking any chosen cell population.  相似文献   
154.
It was previously suggested that the 25-Vitamin-D3-1-hydroxylase (CYP27B1) is downregulated during human prostate tumor pathogenesis while the catabolic 25-Vitamin-D3-24-hydroxylase (CYP24) expression is increased. The latter could lead to resistance against the antimitotic, prodifferentiating activity of 1,25-dihydroxycholecalciferol. Our hypothesis was that regulation of Vitamin D hydroxylase expression during prostate tumor progression might be under epigenetic control. We demonstrate by real time RT-PCR that PNT-2 human normal prostate cells indeed possess CYP27B1, but are practically devoid of CYP24 mRNA, whereas DU-145 cancer cells have constitutive expression of CYP24, and very low levels of CYP27B1 mRNA. Treatment of PNT-2 cells with the methylation inhibitor 5-aza-2′-deoxycytidine together with the deacetylation inhibitor trichostatin A resulted in elevation of both CYP27B1 and CYP24 mRNA expression demonstrating that even in normal human prostate cells expression of Vitamin D hydroxylases may be under epigenetic control. In the DU-145 malignant cell line trichostatin A together with 5-aza-2′-deoxycytidine increased CYP27B1 mRNA expression to a smaller extent than in normal cells, however this resulted in a highly significant increase in 1-hydroxylation capacity. This demonstrates for the first time that synthesis of 1,25-dihydroxycholecalciferol in human prostate tumors could be reinitiated by epigenetic regulators.  相似文献   
155.
Reversible protein phosphorylation represents a cellular response to normal physiological processes as well as to cellular insults and stress. Recently, the protein phosphatase-associated alpha4 subunit was shown to be required for sustaining cell survival. Lack of alpha4 leads to apoptotic death of multiple cell types and to the death of the organism. Here, we explore how the phosphatase network might operate in controlling life-and-death decisions. We discuss the relevance of the findings for understanding the action of alpha4 in cell survival and for better discriminating between a role in maintaining cellular homeostasis, and thus survival, or actively keeping apoptotic cell death in check by targeting effectors of the cell death machinery.  相似文献   
156.
The present report describes how the soluble germinal angiotensin I-converting enzyme (gACE) appears in the epididymal fluid, where it has been identified in some laboratory rodents and domestic ungulates. We showed that this gACE results from an active proteolytic process that releases the enzyme's extracellular domain from sperm in a precise spatiotemporal location during epididymal transit and that this process involves serine protease activity. Using polyclonal antibodies against the C-terminal intracellular sequence of ACE, a fragment of approximately 10 kDa was detected on the sperm extract only in the epididymal region, where the gACE release occurs. The fluid enzyme was purified, and the cleavage site was determined by mass spectrometry to be between Arg622 and Leu623 of the mature sheep gACE sequence (equivalent to Arg627 and Arg1203 of the human mature gACE and somatic ACE sequences, respectively). Thereafter, the C-terminal Arg was removed, leaving Ala621 as a C-terminal. Using an in vitro assay, gACE cleavage from sperm was strongly increased by the presence of epididymal fluid from the release zone, and this increase was inhibited specifically by the serine protease-inhibitor AEBSF but not by para-aminobenzamidine. None of the other inhibitors tested, such as metallo- or cystein-protease inhibitors, had a similar effect on release. It was also found that this process did not involve changes in gACE phosphorylation.  相似文献   
157.
HIV-1 Nef disrupts antigen presentation early in the secretory pathway   总被引:4,自引:0,他引:4  
Human immunodeficiency virus, type 1 Nef disrupts viral antigen presentation and promotes viral immune evasion from cytotoxic T lymphocytes. There is evidence that Nef acts early in the secretory pathway to redirect major histocompatibility complex class I (MHC-I) from the trans-Golgi network to the endolysosomal pathway. However, a competing model suggests that Nef acts much later by accelerating MHC-I turnover at the cell surface. Here we demonstrate that Nef targets early forms of MHC-I molecules in the endoplasmic reticulum by preferentially binding hypophosphorylated cytoplasmic tails. The Nef-MHC-I complex migrates normally into the Golgi apparatus but subsequently fails to arrive at the cell surface and become phosphorylated. Cell type-specific differences in the rate of MHC-I transport through the secretory pathway correlate with responsiveness to Nef and co-precipitation of adaptor protein 1 with the Nef.MHC-I complex. We propose that the assembly of a Nef.MHC-I.adaptor protein 1 complex early in the secretory pathway is important for Nef activity.  相似文献   
158.
Pancreatic lipase is a soluble globular protein that must undergo structural modifications before it can hydrolyze oil droplets coated with bile salts. The binding of colipase and movement of the lipase lid open access to the active site. Mechanisms triggering lid mobility are unclear. The *KNILSQIVDIDGI* fragment of the lid of the human pancreatic lipase is predicted by molecular modeling to be a tilted peptide. Tilted peptides are hydrophobicity motifs involved in membrane fusion and more globally in perturbations of hydrophobic/hydrophilic interfaces. Analysis of this lid fragment predicts no clear consensus of secondary structure that suggests that its structure is not strongly sequence determined and could vary with environment. Point mutations were designed to modify the hydrophobicity profile of the [240-252] fragment and their consequences on the lipase-mediated catalysis were tested. Two mutants, in which the tilted peptide motif was lost, also have poor activity on bile salt-coated oil droplets and cannot be reactivated by colipase. Conversely, one mutant in which a different tilted peptide is created retains colipase dependence. These results suggest that the tilted hydrophobicity pattern of the [240-252] fragment is neither important for colipase binding to lipase, nor for interfacial binding but is important to trigger the maximal catalytic efficiency of lipase in the presence of bile salt.  相似文献   
159.
Mammalian cells respond to nutrient deprivation by inhibiting energy consuming processes, such as proliferation and protein synthesis, and by stimulating catabolic processes, such as autophagy. p70 S6 kinase (S6K1) plays a central role during nutritional regulation of translation. S6K1 is activated by growth factors such as insulin, and by mammalian target of rapamycin (mTOR), which is itself regulated by amino acids. The Class IA phosphatidylinositol (PI) 3-kinase plays a well recognized role in the regulation of S6K1. We now present evidence that the Class III PI 3-kinase, hVps34, also regulates S6K1, and is a critical component of the nutrient sensing apparatus. Overexpression of hVps34 or the associated hVps15 kinase activates S6K1, and insulin stimulation of S6K1 is blocked by microinjection of inhibitory anti-hVps34 antibodies, overexpression of a FYVE domain construct that sequesters the hVps34 product PI3P, or small interfering RNA-mediated knock-down of hVps34. hVps34 is not part of the insulin input to S6K1, as it is not stimulated by insulin, and inhibition of hVps34 has no effect on phosphorylation of Akt or TSC2 in insulin-stimulated cells. However, hVps34 is inhibited by amino acid or glucose starvation, suggesting that it lies on the nutrient-regulated pathway to S6K1. Consistent with this, hVps34 is also inhibited by activation of the AMP-activated kinase, which inhibits mTOR/S6K1 in glucose-starved cells. hVps34 appears to lie upstream of mTOR, as small interfering RNA knock-down of hVps34 inhibits the phosphorylation of another mTOR substrate, eIF4E-binding protein-1 (4EBP1). Our data suggest that hVps34 is a nutrient-regulated lipid kinase that integrates amino acid and glucose inputs to mTOR and S6K1.  相似文献   
160.
The intestinal absorption of benzyl beta-glucoside (BNZ beta glc) contained in the fruit of Prunus mume SIEB. et ZUCC. (Rosaceae), which is traditionally used as a medicinal food in Japan, was studied in rat intestines. BNZ beta glc was absorbed from the mucosal to serosal sides. Its metabolite, benzyl alcohol (BAL), was also detected on both the mucosal and serosal sides. In the presence of phloridzin (Na(+)/glucose cotransporter (SGLT1) inhibitor) or in the absence of Na+ (driving force), BNZ beta glc absorption was significantly decreased. Transport clearance of BNZ beta glc across the brush border membrane decreased as its concentration increased. These results indicate that BNZ beta glc is transported by SGLT1. Metabolic clearance of BNZ beta glc also decreased as its concentration increased. The amount ratio of BNZ beta glc to BAL on the serosal side increased with the increase of BNZ beta glc concentration. The intestinal availability of BNZ beta glc was lower in the absence of Na+ than in the presence of Na+, indicating that the SGLT1-mediated transport of BNZ beta glc increases intestinal availability by decreasing the intestinal extraction ratio. This neutraceutical study concluded that intestinal carrier-mediated transport across the brush border membrane improves the intestinal availability of nutritionally, pharmacologically or physiologically active compounds that undergo intestinal metabolism (first-pass effect).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号