首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1622篇
  免费   115篇
  1737篇
  2024年   4篇
  2023年   16篇
  2022年   23篇
  2021年   55篇
  2020年   25篇
  2019年   33篇
  2018年   39篇
  2017年   26篇
  2016年   43篇
  2015年   84篇
  2014年   71篇
  2013年   133篇
  2012年   130篇
  2011年   138篇
  2010年   66篇
  2009年   86篇
  2008年   103篇
  2007年   86篇
  2006年   89篇
  2005年   67篇
  2004年   60篇
  2003年   65篇
  2002年   43篇
  2001年   22篇
  2000年   29篇
  1999年   13篇
  1998年   14篇
  1997年   23篇
  1996年   9篇
  1995年   14篇
  1994年   11篇
  1993年   11篇
  1992年   19篇
  1991年   8篇
  1990年   9篇
  1989年   6篇
  1988年   4篇
  1987年   8篇
  1986年   3篇
  1985年   4篇
  1984年   6篇
  1983年   4篇
  1982年   4篇
  1981年   4篇
  1980年   3篇
  1978年   2篇
  1976年   4篇
  1973年   3篇
  1969年   2篇
  1967年   2篇
排序方式: 共有1737条查询结果,搜索用时 15 毫秒
151.
152.
Sepsis is a major cause for death worldwide. Numerous interventional trials with agents neutralizing single proinflammatory mediators have failed to improve survival in sepsis and aseptic systemic inflammatory response syndromes. This failure could be explained by the widespread gene expression dysregulation known as “genomic storm” in these patients. A multifunctional polyspecific therapeutic agent might be needed to thwart the effects of this storm. Licensed pooled intravenous immunoglobulin preparations seemed to be a promising candidate, but they have also failed in their present form to prevent sepsis-related death. We report here the protective effect of a single dose of intravenous immunoglobulin preparations with additionally enhanced polyspecificity in three models of sepsis and aseptic systemic inflammation. The modification of the pooled immunoglobulin G molecules by exposure to ferrous ions resulted in their newly acquired ability to bind some proinflammatory molecules, complement components and endogenous “danger” signals. The improved survival in endotoxemia was associated with serum levels of proinflammatory cytokines, diminished complement consumption and normalization of the coagulation time. We suggest that intravenous immunoglobulin preparations with additionally enhanced polyspecificity have a clinical potential in sepsis and related systemic inflammatory syndromes.  相似文献   
153.
For Escherichia coli, it has been assumed that L-alanine is synthesized by alanine-valine transaminase (AvtA) in conjunction with an unknown alanine aminotransferase(s). We isolated alanine auxotrophs from a prototrophic double mutant deficient in AvtA and YfbQ, a novel alanine aminotransferase, by chemical mutagenesis. A shotgun cloning experiment identified two genes, uncharacterized yfdZ and serC, that complemented the alanine auxotrophy. When the yfdZ- or serC-mutation was introduced into the double mutant, one triple mutant (avtA yfbQ yfdZ) showed alanine auxotrophy, and another (avtA yfbQ serC), prototrophy. In addition, we found that four independent alanine auxotrophs possessed a point mutation in yfdZ but not in serC. We also found that yfdZ expression was induced in minimal medium. Furthermore, yfbQ-bearing plasmid conferred the ability to excrete alanine on the mutant lacking D-amino acid dehydrogenase-encoding gene, dadA. From these results, we concluded that E. coli synthesizes L-alanine by means of three aminotransferases, YfbQ, YfdZ, and AvtA.  相似文献   
154.
The Drosophila Apaf-1 related killer forms an apoptosome in the intrinsic cell death pathway. In this study we show that Dark forms a single ring when initiator procaspases are bound. This Dark-Dronc complex cleaves DrICE efficiently; hence, a single ring represents the Drosophila apoptosome. We then determined the 3D structure of a double ring at ~6.9?? resolution and created a model of the apoptosome. Subunit interactions in the Dark complex are similar to those in Apaf-1 and CED-4 apoptosomes, but there are significant differences. In particular, Dark has "lost" a loop in the nucleotide-binding pocket, which opens a path for possible dATP exchange in the apoptosome. In addition, caspase recruitment domains (CARDs) form a crown on the central hub of the Dark apoptosome. This CARD geometry suggests that conformational changes will be required to form active Dark-Dronc complexes. When taken together, these data provide insights into apoptosome structure, function, and evolution.  相似文献   
155.
The innate immune system provides first-line defences in response to invading microorganisms and endogenous danger signals by triggering robust inflammatory and antimicrobial responses. However, innate immune sensing of commensal microorganisms in the intestinal tract does not lead to chronic intestinal inflammation in healthy individuals, reflecting the intricacy of the regulatory mechanisms that tame the inflammatory response in the gut. Recent findings suggest that innate immune responses to commensal microorganisms, although once considered to be harmful, are necessary for intestinal homeostasis and immune tolerance. This Review discusses recent findings that identify a crucial role for innate immune effector molecules in protection against colitis and colitis-associated colorectal cancer and the therapeutic implications that ensue.  相似文献   
156.
In this work, an automated flow‐based procedure for the screening of the effect of the different phenolic compounds on the chemiluminescence (CL) luminol–hydrogen peroxide–horseradish peroxidase (HRP) system is presented. This procedure involves the combination of multisyringe flow injection analysis (MFSIA) and sequential injection analysis (SIA) techniques and exploits the ability of the different subgroups of phenols, such as cholorophenols, nitrophenols, methylphenols and polyphenols, to enhance or inhibit the described CL system. The implementation of this reaction in the SIA–MSFIA system enabled favourable and precise conditions to evaluate the effect of phenolic compounds, as it involves an in‐line reaction between the phenolic derivative, hydrogen peroxide and peroxidase and subsequent oxidized HRP intermediates generation prior to the fast reaction with the chemiluminogenic reagent. Several studies were then performed with the aim of establishing the appropriate flow system configuration and reaction conditions. It was shown that phenol and chlorophenols produce an enhanced CL response and nitrophenols, methylphenols and polyphenols are inhibitors within the range of concentrations studied (1–100 mg/L). Based on these studies, the developed method was applied to the determination of total polyphenol and phenol content in wine/grape seeds and water samples, respectively, and the results obtained showed good agreement with those furnished by the corresponding Folin–Ciocalteu and 4‐aminoantipyrine reference methods. The developed approach is further pursued by designing an automated generic tool for performing studies of peroxidase‐catalysed CL reactions of luminol focused on the detection of compounds that will affect the rate of those reactions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
157.
Three holocelluloses (i.e., cellulose and hemicellulose fractions) are prepared from softwood and hardwood by the Wise method. These holocelluloses completely dissolve in 8% lithium chloride/1,3-dimethyl-2-imidazolidinone (LiCl/DMI) after an ethylenediamine (EDA) pretreatment. After diluting the holocellulose solutions to 1% LiCl/DMI, they are subjected to size-exclusion chromatography/multiangle laser-light scattering/photodiode array (SEC-MALLS-PDA) analysis. All holocelluloses exhibit bimodal molecular weight distributions primarily due to high-molecular-weight (HMW) cellulose and low-molecular-weight hemicellulose fractions. Plots of molecular weight vs root-mean-square radius obtained by SEC-MALLS analysis revealed that all the wood celluloses comprise dense conformations in 1% LiCl/DMI. In contrast, bacterial cellulose, which was used as a pure cellulose model, has a random coil conformation as a linear polymer. These results show that both softwood and hardwood HMW celluloses contain branched structures, which are probably present on crystalline cellulose microfibril surfaces. These results are consistent with those obtained by permethylation analysis of wood celluloses.  相似文献   
158.
Cellulose nanofibers were prepared by TEMPO-mediated oxidation of wood pulp and tunicate cellulose. The cellulose nanofiber suspension in water was spun into an acetone coagulation bath. The spinning rate was varied from 0.1 to 100 m/min to align the nanofibers to the spun fibers. The fibers spun from the wood nanofibers had a hollow structure at spinning rates of >10 m/min, whereas the fibers spun from tunicate nanofibers were porous. Wide-angle X-ray diffraction analysis revealed that the wood and tunicate nanofibers were aligned to the fiber direction of the spun fibers at higher spinning rates. The wood spun fibers at 100 m/min had a Young's modulus of 23.6 GPa, tensile strength of 321 MPa, and elongation at break of 2.2%. The Young's modulus of the wood spun fibers increased with an increase in the spinning rate because of the nanofiber orientation effect.  相似文献   
159.
Dynamic viscoelasticity measurements were performed for aqueous dispersions of cellulose nanofibers prepared by TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical)-mediated oxidation and subsequent mechanical disintegration in water. The frequency dependence of the storage and loss moduli of 0.02% (w/v) dispersions of TEMPO-oxidized cellulose nanofibers in water showed terminal relaxation behavior at relatively lower angular frequencies. This strongly suggests that each cellulose nanofiber in the dispersion behaves as a semiflexible rod-like macromolecular chain or colloidal particle. Furthermore, a clear boundary was observed between the terminal relaxation and rubbery plateau regions. The longest viscoelastic relaxation time, τ, was estimated from the angular frequency, corresponding to the boundary point, and the average length of the cellulose nanofibers, L, was estimated using the equation τ = πη(s)L(3)/[18k(B)T ln(L/d)]. The equation gave a value of L = 2.2 μm, which was in good agreement with TEM observations.  相似文献   
160.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号