首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1291篇
  免费   93篇
  1384篇
  2024年   4篇
  2023年   16篇
  2022年   21篇
  2021年   53篇
  2020年   25篇
  2019年   32篇
  2018年   38篇
  2017年   26篇
  2016年   40篇
  2015年   76篇
  2014年   69篇
  2013年   93篇
  2012年   112篇
  2011年   121篇
  2010年   67篇
  2009年   74篇
  2008年   93篇
  2007年   76篇
  2006年   71篇
  2005年   58篇
  2004年   50篇
  2003年   45篇
  2002年   36篇
  2001年   6篇
  2000年   8篇
  1999年   6篇
  1998年   7篇
  1997年   13篇
  1996年   3篇
  1995年   4篇
  1994年   2篇
  1993年   3篇
  1990年   2篇
  1989年   4篇
  1987年   3篇
  1985年   3篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1976年   1篇
  1973年   2篇
  1972年   1篇
  1969年   2篇
  1967年   1篇
  1962年   1篇
  1960年   1篇
排序方式: 共有1384条查询结果,搜索用时 15 毫秒
101.
Prehna G  Ivanov MI  Bliska JB  Stebbins CE 《Cell》2006,126(5):869-880
Yersinia spp. cause gastroenteritis and the plague, representing historically devastating pathogens that are currently an important biodefense and antibiotic resistance concern. A critical virulence determinant is the Yersinia protein kinase A, or YpkA, a multidomain protein that disrupts the eukaryotic actin cytoskeleton. Here we solve the crystal structure of a YpkA-Rac1 complex and find that YpkA possesses a Rac1 binding domain that mimics host guanidine nucleotide dissociation inhibitors (GDIs) of the Rho GTPases. YpkA inhibits nucleotide exchange in Rac1 and RhoA, and mutations that disrupt the YpkA-GTPase interface abolish this activity in vitro and impair in vivo YpkA-induced cytoskeletal disruption. In cell culture experiments, the kinase and the GDI domains of YpkA act synergistically to promote cytoskeletal disruption, and a Y. pseudotuberculosis mutant lacking YpkA GDI activity shows attenuated virulence in a mouse infection assay. We conclude that virulence in Yersinia depends strongly upon mimicry of host GDI proteins by YpkA.  相似文献   
102.
The influence of salicylic acid (SA) on elicitation of defense mechanisms in Arabidopsis (Arabidopsis thaliana) seeds and seedlings was assessed by physiological measurements combined with global expression profiling (proteomics). Parallel experiments were carried out using the NahG transgenic plants expressing the bacterial gene encoding SA hydroxylase, which cannot accumulate the active form of this plant defense elicitor. SA markedly improved germination under salt stress. Proteomic analyses disclosed a specific accumulation of protein spots regulated by SA as inferred by silver-nitrate staining of two-dimensional gels, detection of carbonylated (oxidized) proteins, and neosynthesized proteins with [35S]-methionine. The combined results revealed several processes potentially affected by SA. This molecule enhanced the reinduction of the late maturation program during early stages of germination, thereby allowing the germinating seeds to reinforce their capacity to mount adaptive responses in environmental water stress. Other processes affected by SA concerned the quality of protein translation, the priming of seed metabolism, the synthesis of antioxidant enzymes, and the mobilization of seed storage proteins. All the observed effects are likely to improve seed vigor. Another aspect revealed by this study concerned the oxidative stress entailed by SA in germinating seeds, as inferred from a characterization of the carbonylated (oxidized) proteome. Finally, the proteomic data revealed a close interplay between abscisic signaling and SA elicitation of seed vigor.  相似文献   
103.
104.
The term amyloid has historically been used to describe fibrillar aggregates formed as the result of protein misfolding and that are associated with a range of diseases broadly termed amyloidoses. The discovery of “functional amyloids” expanded the amyloid umbrella to encompass aggregates structurally similar to disease-associated amyloids but that engage in a variety of biologically useful tasks without incurring toxicity. The mechanisms by which functional amyloid systems ensure nontoxic assembly has provided insights into potential therapeutic strategies for treating amyloidoses. Some of the most-studied functional amyloids are ones produced by bacteria. Curli amyloids are extracellular fibers made by enteric bacteria that function to encase and protect bacterial communities during biofilm formation. Here we review recent studies highlighting microbial functional amyloid assembly systems that are tailored to enable the assembly of non-toxic amyloid aggregates.  相似文献   
105.
106.
Sepsis is a major cause for death worldwide. Numerous interventional trials with agents neutralizing single proinflammatory mediators have failed to improve survival in sepsis and aseptic systemic inflammatory response syndromes. This failure could be explained by the widespread gene expression dysregulation known as “genomic storm” in these patients. A multifunctional polyspecific therapeutic agent might be needed to thwart the effects of this storm. Licensed pooled intravenous immunoglobulin preparations seemed to be a promising candidate, but they have also failed in their present form to prevent sepsis-related death. We report here the protective effect of a single dose of intravenous immunoglobulin preparations with additionally enhanced polyspecificity in three models of sepsis and aseptic systemic inflammation. The modification of the pooled immunoglobulin G molecules by exposure to ferrous ions resulted in their newly acquired ability to bind some proinflammatory molecules, complement components and endogenous “danger” signals. The improved survival in endotoxemia was associated with serum levels of proinflammatory cytokines, diminished complement consumption and normalization of the coagulation time. We suggest that intravenous immunoglobulin preparations with additionally enhanced polyspecificity have a clinical potential in sepsis and related systemic inflammatory syndromes.  相似文献   
107.
Some of the most serious diseases involve altered size and structure of the arterial wall. Elucidating how arterial walls are built could aid understanding of these diseases, but little is known about how concentric layers of muscle cells and the outer adventitial layer are assembled and patterned around endothelial tubes. Using histochemical, clonal, and genetic analysis in mice, here we show that the pulmonary artery wall is constructed radially, from the inside out, by two separate but coordinated processes. One is sequential induction of successive cell layers from surrounding mesenchyme. The other is controlled invasion of outer layers by inner layer cells through developmentally regulated cell reorientation and radial migration. We propose that a radial signal gradient controls these processes and provide?evidence that PDGF-B and at least one other signal contribute. Modulation of such radial signaling pathways may underlie vessel-specific differences and pathological changes in arterial wall size and structure. VIDEO ABSTRACT:  相似文献   
108.
We present RIBFIND, a method for detecting flexibility in protein structures via the clustering of secondary structural elements (SSEs) into rigid bodies. To test the usefulness of the method in refining atomic structures within cryoEM density we incorporated it into our flexible fitting protocol (Flex-EM). Our benchmark includes 13 pairs of protein structures in two conformations each, one of which is represented by a corresponding cryoEM map. Refining the structures in simulated and experimental maps at the 5–15 Å resolution range using rigid bodies identified by RIBFIND shows a significant improvement over using individual SSEs as rigid bodies. For the 15 Å resolution simulated maps, using RIBFIND-based rigid bodies improves the initial fits by 40.64% on average, as compared to 26.52% when using individual SSEs. Furthermore, for some test cases we show that at the sub-nanometer resolution range the fits can be further improved by applying a two-stage refinement protocol (using RIBFIND-based refinement followed by an SSE-based refinement). The method is stand-alone and could serve as a general interactive tool for guiding flexible fitting into EM maps.  相似文献   
109.
Protein kinase D (PKD) regulates many diverse cellular functions in response to diacylglycerol. To monitor PKD signaling in live cells, we generated a genetically encoded fluorescent reporter for PKD activity, DKAR (D kinase activity reporter). DKAR expressed in mammalian cells undergoes reversible fluorescence resonance energy transfer changes upon activation and inhibition of endogenous PKD. Surprisingly, we find that agonist-evoked activation of PKD is driven not only by diacylglycerol production, but by Ca(2+). Furthermore, elevation of intracellular Ca(2+), in the absence of any other stimulus, is sufficient to activate PKD. Concurrent imaging of Ca(2+), diacylglycerol, and PKD activity reveals that thapsigargin-mediated elevation of intracellular Ca(2+) is closely followed by a robust increase in diacylglycerol production, in turn followed by PKD activation. The Ca(2+)-induced production of diacylglycerol and accompanying PKD activation is dependent on phospholipase C activity. These data reveal that Ca(2+) is a major contributor to the initiation of PKD signaling through positive feedback regulation of diacylglycerol production, unveiling a new mechanism in PKD activation.  相似文献   
110.
Lipid rafts are plasma membrane microdomains that are highly enriched in signaling molecules and that act as signal transduction platforms for many immune receptors. The involvement of these microdomains in HLA-DR-induced signaling is less well defined. We examined the constitutive presence of HLA-DR molecules in lipid rafts, their possible recruitment into these microdomains, and the role of these microdomains in HLA-DR-induced responses. We detected significant amounts of HLA-DR molecules in the lipid rafts of EBV(+) and EBV(-) B cell lines, monocytic cell lines, transfected HeLa cells, tonsillar B cells, and human monocytes. Localization of HLA-DR in these microdomains was unaffected by the deletion of the cytoplasmic domain of both the alpha and beta chains. Ligation of HLA-DR with a bivalent, but not a monovalent, ligand resulted in rapid tyrosine phosphorylation of many substrates, especially Lyn, and activation of ERK1/2 MAP kinase. However, the treatment failed to induce further recruitment of HLA-DR molecules into lipid rafts. The HLA-DR-induced signaling events were accompanied by the induction of cell-cell adhesion that could be inhibited by PTK and Lyn but not ERK1/2 inhibitors. Disruption of lipid rafts by methyl-beta-cyclodextrin (MbetaCD) resulted in the loss of membrane raft association with HLA-DR molecules, inhibition of HLA-DR-mediated protein tyrosine phosphorylation and cell-cell adhesion. MbetaCD did not affect the activation of ERK1/2, which was absent from lipid rafts. These results indicate that although all the HLA-DR-induced events studied are dependent on HLA-DR dimerization, some require the presence of HLA-DR molecules in lipid rafts, whereas others do not.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号