首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1268篇
  免费   94篇
  1362篇
  2024年   4篇
  2023年   16篇
  2022年   21篇
  2021年   53篇
  2020年   25篇
  2019年   32篇
  2018年   38篇
  2017年   26篇
  2016年   39篇
  2015年   76篇
  2014年   67篇
  2013年   92篇
  2012年   109篇
  2011年   120篇
  2010年   64篇
  2009年   74篇
  2008年   91篇
  2007年   75篇
  2006年   71篇
  2005年   57篇
  2004年   48篇
  2003年   43篇
  2002年   35篇
  2001年   6篇
  2000年   9篇
  1999年   5篇
  1998年   7篇
  1997年   11篇
  1996年   3篇
  1995年   4篇
  1994年   2篇
  1993年   3篇
  1990年   2篇
  1989年   4篇
  1987年   3篇
  1985年   3篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1976年   1篇
  1973年   2篇
  1972年   1篇
  1969年   2篇
  1967年   1篇
  1962年   1篇
  1960年   1篇
排序方式: 共有1362条查询结果,搜索用时 0 毫秒
151.
It has been reported evidence based on equilibrium binding, electrophoretic, immunoelectrophoretic studies, that the rat possesses a major high affinity thyroid hormone binding protein, with an electrophoretic mobility and binding properties similar to those of the human thyroxine binding globulin (TBG). It is shown that in the sera of postnatal developing animals, between 3 and 21 days, the thyroxine (T4) and the triiodothyronine (T3) binding activities increase up to 10 times over adult or foetal levels, due to a high transient post-natal surge of the rat TBG. In the adult serum, the TBG persists in decreased amounts: it then yields the predominant role as T4 carrier to the thyroid binding prealbumin (TBPA), but retains the major role as binder of T3, i.e. of the biologically active thyroid hormone.  相似文献   
152.
Endo peptidyl epoxides, in which the central epoxidic moiety replaces the scissile amide bond of a P(3)-P(3)' peptide, were designed as cysteine proteases inhibitors. The additional P'-S' interactions, relative to those of an exo peptidyl epoxide of the same P(3)-P(1) sequence, significantly improved affinity to the enzymes papain and cathepsin B, but also changed the mode of inhibition from active-site directed inactivation to reversible competitive inhibition. Computational models rationalize the binding affinity and the inhibition mechanism.  相似文献   
153.
The potential role played by formate dehydrogenase (FDH) in formate metabolism has been examined by the overexpression of FDH in Arabidopsis thaliana. Three independent transgenic lines were selected and shown to produce elevated amounts of FDH protein with a corresponding elevated FDH activity (2.5-5 fold) over wild-type (WT) plants. Under normal growth conditions, no altered phenotype was observed in these transgenic plants; in growth media supplied with formate, however, significant differences in shoot and root growth, compared to that of WT plants, were observed. WT plants were severely injured if grown in the presence of 16 mmol/L formate, while the transgenic plants were able to grow well. Formate delayed germination of both WT and transgenic seeds at concentrations above 4 mmol/L, but both types of seeds were eventually able to complete more than 95 % germination even at 32 mmol/L formate. Formate markedly inhibited primary root elongation, and its inhibitory action on WT was much stronger than on transgenic plants. Different formate salts affected root elongation similarly, indicating that the formate ion was the major factor inhibiting root growth. Sodium acetate (NaAc), an analogue of formate, also inhibited root elongation, but its action on WT and transgenic plants was the same, indicating that tolerance of transgenic plants to formate toxicity was specific. Transgenic plants showed no significant tolerance to the toxicity of two other one-carbon metabolites, methanol and formaldehyde. A role for FDH in detoxifying formate is proposed.  相似文献   
154.
155.
156.
Coral reef ecosystems are under a variety of threats from global change and anthropogenic disturbances that are reducing the number and type of coral species on reefs. Coral reefs support upwards of one third of all marine species of fish, so the loss of coral habitat may have substantial consequences to local fish diversity. We posit that the effects of habitat degradation will be most severe in coral regions with highest biodiversity of fishes due to greater specialization by fishes for particular coral habitats. Our novel approach to this important but untested hypothesis was to conduct the same field experiment at three geographic locations across the Indo-Pacific biodiversity gradient (Papua New Guinea; Great Barrier Reef, Australia; French Polynesia). Specifically, we experimentally explored whether the response of local fish communities to identical changes in diversity of habitat-providing corals was independent of the size of the regional species pool of fishes. We found that the proportional reduction (sensitivity) in fish biodiversity to loss of coral diversity was greater for regions with larger background species pools, reflecting variation in the degree of habitat specialization of fishes across the Indo-Pacific diversity gradient. This result implies that habitat-associated fish in diversity hotspots are at greater risk of local extinction to a given loss of habitat diversity compared to regions with lower species richness. This mechanism, related to the positive relationship between habitat specialization and regional biodiversity, and the elevated extinction risk this poses for biodiversity hotspots, may apply to species in other types of ecosystems.  相似文献   
157.
158.
AFLP analysis of relationships among cassava and other Manihot species   总被引:4,自引:0,他引:4  
 Despite the worldwide importance of cultivated cassava (M. esculenta Crantz) its origin and taxonomic relationships with other species in the genus have not been clearly established. We evaluated a representative sample of the crop’s diversity and six wild taxa with AFLPs to estimate genetic relationships within the genus. Groupings of accessions of each species by data analysis corresponded largely with their previous taxonomic classifications. A mixed group, consisting of Manihot esculenta subsp. flabellifolia and M. esculenta subsp. peruviana, was most similar to cassava, while M. aesculifolia, M. brachyloba, and M. carthaginensis were more distant. Species-specific markers, which may be useful in germ-plasm classification or introgression studies, were suggested by the unique presence of AFLP products in samples of each of the three wild species. Heterogeneity of similarities among individuals of certain species suggested the existence of intraspecific gene pools, a hypothesis that was supported by morphological or ecogeographic evidence with varying degrees of success. Quantitative assessment of genetic diversity revealed greater homogeneity among cassava accessions than among itsclosest wild relatives. The demonstration of unique genetic diversity in the two M. esculenta subspecies and their genetic similarity to the crop supports the hypothesis that these materials may be the ancestors of cassava. Received: 4 November 1996 / Accepted: 20 December 1996  相似文献   
159.
To study the role of the mobile C-terminal extension present in bacterial class of plant type NADP(H):ferredoxin reductases during catalysis, we generated a series of mutants of the Rhodobacter capsulatus enzyme (RcFPR). Deletion of the six C-terminal amino acids beyond alanine 266 was combined with the replacement A266Y, emulating the structure present in plastidic versions of this flavoenzyme. Analysis of absorbance and fluorescence spectra suggests that deletion does not modify the general geometry of FAD itself, but increases exposure of the flavin to the solvent, prevents a productive geometry of FAD:NADP(H) complex and decreases the protein thermal stability. Although the replacement A266Y partially coats the isoalloxazine from solvent and slightly restores protein stability, this single change does not allow formation of active charge-transfer complexes commonly present in the wild-type FPR, probably due to restraints of C-terminus pliability. A proton exchange process is deduced from ITC measurements during coenzyme binding. All studied RcFPR variants display higher affinity for NADP+ than wild-type, evidencing the contribution of the C-terminus in tempering a non-productive strong (rigid) interaction with the coenzyme. The decreased catalytic rate parameters confirm that the hydride transfer from NADPH to the flavin ring is considerably hampered in the mutants. Although the involvement of the C-terminal extension from bacterial FPRs in stabilizing overall folding and bent-FAD geometry has been stated, the most relevant contributions to catalysis are modulation of coenzyme entrance and affinity, promotion of the optimal geometry of an active complex and supply of a proton acceptor acting during coenzyme binding.  相似文献   
160.
The endoplasmic reticulum (ER) is the entry site of proteins into the endomembrane system. Proteins exit the ER via coat protein II (COPII) vesicles in a selective manner, mediated either by direct interaction with the COPII coat or aided by cargo receptors. Despite the fundamental role of such receptors in protein sorting, only a few have been identified. To further define the machinery that packages secretory cargo and targets proteins from the ER to Golgi membranes, we used multiple systematic approaches, which revealed 2 uncharacterized proteins that mediate the trafficking and maturation of Pma1, the essential yeast plasma membrane proton ATPase. Ydl121c (Exp1) is an ER protein that binds Pma1, is packaged into COPII vesicles, and whose deletion causes ER retention of Pma1. Ykl077w (Psg1) physically interacts with Exp1 and can be found in the Golgi and coat protein I (COPI) vesicles but does not directly bind Pma1. Loss of Psg1 causes enhanced degradation of Pma1 in the vacuole. Our findings suggest that Exp1 is a Pma1 cargo receptor and that Psg1 aids Pma1 maturation in the Golgi or affects its retrieval. More generally our work shows the utility of high content screens in the identification of novel trafficking components.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号