全文获取类型
收费全文 | 1307篇 |
免费 | 95篇 |
专业分类
1402篇 |
出版年
2024年 | 4篇 |
2023年 | 16篇 |
2022年 | 23篇 |
2021年 | 54篇 |
2020年 | 26篇 |
2019年 | 32篇 |
2018年 | 40篇 |
2017年 | 26篇 |
2016年 | 43篇 |
2015年 | 79篇 |
2014年 | 69篇 |
2013年 | 98篇 |
2012年 | 111篇 |
2011年 | 122篇 |
2010年 | 65篇 |
2009年 | 75篇 |
2008年 | 91篇 |
2007年 | 77篇 |
2006年 | 71篇 |
2005年 | 57篇 |
2004年 | 48篇 |
2003年 | 43篇 |
2002年 | 35篇 |
2001年 | 7篇 |
2000年 | 7篇 |
1999年 | 5篇 |
1998年 | 8篇 |
1997年 | 11篇 |
1996年 | 3篇 |
1995年 | 4篇 |
1994年 | 2篇 |
1993年 | 3篇 |
1991年 | 2篇 |
1990年 | 3篇 |
1989年 | 5篇 |
1987年 | 3篇 |
1986年 | 2篇 |
1985年 | 3篇 |
1983年 | 2篇 |
1982年 | 2篇 |
1981年 | 4篇 |
1980年 | 2篇 |
1979年 | 3篇 |
1978年 | 3篇 |
1973年 | 3篇 |
1972年 | 1篇 |
1969年 | 2篇 |
1967年 | 1篇 |
1962年 | 1篇 |
1960年 | 1篇 |
排序方式: 共有1402条查询结果,搜索用时 15 毫秒
51.
Maya Yotova Ilina Krasteva Kristina Jenett-Siems Petranka Zdraveva Stefan Nikolov 《Phytochemistry letters》2012,5(4):752-755
A new triterpeniod saponin 3-O-β-arabinopyranosyl-(1 → 3)-[β-galactopyranosyl-(1 → 2)]-β-glucuronopyranosyl gypsogenin (1), together with the known saponin 3-O-β-xylopyranosyl-(1 → 3)-[β-galactopyranosyl-(1 → 2)]-β-glucuronopyranosyl gypsogenin (2), and three known triterpenes gypsogenic acid (3), quillaic acid (4) and gypsogenin (5) were isolated from the roots of Gypsophila trichotoma Wend. (Caryophyllaceae). Their structures were elucidated by chemical and spectral methods. Cytotoxic activity of compounds 1 and 2 were tested against seven human cancer cell lines. Compound 1 showed cytotoxic activity against all of them, while compound 2 only against two cell lines. 相似文献
52.
To evade the anti-human immunodeficiency virus (HIV) immune response, the HIV Nef protein disrupts major histocompatibility complex class I (MHC-I) trafficking by recruiting the clathrin adaptor protein 1 (AP-1) to the MHC-I cytoplasmic tail. Under normal conditions AP-1 binds dileucine and tyrosine signals (YXX phi motifs) via physically separate binding sites. In the case of the Nef-MHC-I complex, a tyrosine in the human leukocyte antigen (HLA)-A2 cytoplasmic tail ((320)YSQA) and a methionine in Nef (Met(20)) are absolutely required for AP-1 binding. Also present in Nef is a dileucine motif, which does not normally affect MHC-I trafficking and is not needed to recruit AP-1 to the Nef-MHC-I-complex. However, evidence is presented here that this dileucine motif can be activated by fusing Nef to the HLA-A2 tail in cis. Thus, the inability of this motif to function in trans likely results from a structural change that occurs when Nef binds to the MHC-I cytoplasmic tail. The physiologically relevant tyrosine-dependent recruitment of AP-1 to MHC-I, which occurs whether Nef is present in cis or trans, was stabilized by the acidic and polyproline domains within Nef. Additionally, amino acids Ala(324) and Asp(327) in the cytoplasmic tails of HLA-A and (but not HLA-C and HLA-E) molecules also stabilized AP-1 binding. Finally, mutation of the tyrosine binding pocket in the mu subunit of AP-1 created a dominant negative inhibitor of Nef-induced down-modulation of HLA-A2 that disrupted binding of wild type AP-1 to the Nef-MHC-I complex. Thus, these data provide evidence that Nef binding to the MHC-I cytoplasmic tail stabilizes the interaction of a tyrosine in the MHC-I cytoplasmic tail with the natural tyrosine binding pocket in AP-1. 相似文献
53.
Tom V. Lee Maya K. Sethi Jessica Leonardi Nadia A. Rana Falk F. R. Buettner Robert S. Haltiwanger Hans Bakker Hamed Jafar-Nejad 《PLoS genetics》2013,9(6)
The Notch signaling pathway controls a large number of processes during animal development and adult homeostasis. One of the conserved post-translational modifications of the Notch receptors is the addition of an O-linked glucose to epidermal growth factor-like (EGF) repeats with a C-X-S-X-(P/A)-C motif by Protein O-glucosyltransferase 1 (POGLUT1; Rumi in Drosophila). Genetic experiments in flies and mice, and in vivo structure-function analysis in flies indicate that O-glucose residues promote Notch signaling. The O-glucose residues on mammalian Notch1 and Notch2 proteins are efficiently extended by the addition of one or two xylose residues through the function of specific mammalian xylosyltransferases. However, the contribution of xylosylation to Notch signaling is not known. Here, we identify the Drosophila enzyme Shams responsible for the addition of xylose to O-glucose on EGF repeats. Surprisingly, loss- and gain-of-function experiments strongly suggest that xylose negatively regulates Notch signaling, opposite to the role played by glucose residues. Mass spectrometric analysis of Drosophila Notch indicates that addition of xylose to O-glucosylated Notch EGF repeats is limited to EGF14–20. A Notch transgene with mutations in the O-glucosylation sites of Notch EGF16–20 recapitulates the shams loss-of-function phenotypes, and suppresses the phenotypes caused by the overexpression of human xylosyltransferases. Antibody staining in animals with decreased Notch xylosylation indicates that xylose residues on EGF16–20 negatively regulate the surface expression of the Notch receptor. Our studies uncover a specific role for xylose in the regulation of the Drosophila Notch signaling, and suggest a previously unrecognized regulatory role for EGF16–20 of Notch. 相似文献
54.
Yuri S. Fantin Alexey D. Neverov Alexander V. Favorov Maria V. Alvarez-Figueroa Svetlana I. Braslavskaya Maria A. Gordukova Inga V. Karandashova Konstantin V. Kuleshov Anna I. Myznikova Maya S. Polishchuk Denis A. Reshetov Yana A. Voiciehovskaya Andrei A. Mironov Vladimir P. Chulanov 《PloS one》2013,8(1)
Sanger sequencing is a common method of reading DNA sequences. It is less expensive than high-throughput methods, and it is appropriate for numerous applications including molecular diagnostics. However, sequencing mixtures of similar DNA of pathogens with this method is challenging. This is important because most clinical samples contain such mixtures, rather than pure single strains. The traditional solution is to sequence selected clones of PCR products, a complicated, time-consuming, and expensive procedure. Here, we propose the base-calling with vocabulary (BCV) method that computationally deciphers Sanger chromatograms obtained from mixed DNA samples. The inputs to the BCV algorithm are a chromatogram and a dictionary of sequences that are similar to those we expect to obtain. We apply the base-calling function on a test dataset of chromatograms without ambiguous positions, as well as one with 3–14% sequence degeneracy. Furthermore, we use BCV to assemble a consensus sequence for an HIV genome fragment in a sample containing a mixture of viral DNA variants and to determine the positions of the indels. Finally, we detect drug-resistant Mycobacterium tuberculosis strains carrying frameshift mutations mixed with wild-type bacteria in the pncA gene, and roughly characterize bacterial communities in clinical samples by direct 16S rRNA sequencing. 相似文献
55.
Growth factors and cytokines initiate multiple signal transduction pathways that lead to cell survival, cell cycle progression or differentiation. A common feature of these pathways is increased cellular metabolism and glucose uptake. Furthermore, the energy requirements of many cancers and transformed cell lines are met by constitutive upregulation of glucose uptake. Relationships among transforming events, glucose uptake and cell cycle progression are not well understood. Here we investigated the regulation of glucose transport during the cell cycle of growth factor-dependent 32D cells, primary T-cells, src-transformed 32D cells and Jurkat cells. Cells were enriched in the G1, S and G2/M phases of the cell cycle, and glucose transporter expression and 2-deoxyglucose uptake were measured. Glucose transporter expression increased with cell volume as cells progressed through the cell cycle. Growth factor-dependent 32D cells and T-lymphocytes were characterised by increased 2-deoxyglucose uptake from G1 to S and reduced uptake at G2/M, with the highest specific activity of transporters in the S phase. In contrast, src-transformed 32D cells and Jurkat cells showed increased 2-deoxyglucose uptake from S to G2/M, with the highest glucose transporter specific activity in G2/M. Our results show that glucose transport is regulated in a cell cycle-dependent manner and suggest that this regulation may be altered in transformed cells. 相似文献
56.
57.
Maya Popova Liana Asatryan† Olga Ostrovskaya† Letisha R. Wyatt Kaixun Li† Ronald L. Alkana Daryl L. Davies† 《Journal of neurochemistry》2010,112(1):307-317
ATP-gated P2X4 receptors (P2X4R) are abundantly expressed in the CNS. However, little is known about the molecular targets for ethanol action in P2X4Rs. The current investigation tested the hypothesis that the ectodomain-transmembrane (TM) interface contains residues that are important for the action of ethanol in P2X4Rs. Wild type (WT) and mutant P2X4R were expressed in Xenopus oocytes. ATP concentration–response curves and ethanol (10–200 mM)-induced changes in ATP EC10 -gated currents were determined using two-electrode voltage clamp (−70 mV). Alanine substitution at the ectodomain-TM1 interface (positions 50–61) resulted in minimal changes in ethanol response. On the other hand, alanine substitution at the ectodomain-TM2 interface (positions 321–337) identified two key residues (D331 and M336) that significantly reduced ethanol inhibition of ATP-gated currents without causing marked changes in ATP I max , EC50 , or Hill's slope. Other amino acid substitutions at positions 331 and 336 significantly altered or eliminated the modulatory effects of ethanol. Linear regression analyses revealed a significant relationship between hydropathy and polarity, but not molecular volume/molecular weight of the residues at these two positions. The results support the proposed hypothesis and represent an important step toward developing ethanol-insensitive receptors for investigating the role of P2X4Rs in mediating behavioral effects of ethanol. 相似文献
58.
Yoshihisa Hirota Kimie Nakagawa Natsumi Sawada Naoko Okuda Yoshitomo Suhara Yuri Uchino Takashi Kimoto Nobuaki Funahashi Maya Kamao Naoko Tsugawa Toshio Okano 《PloS one》2015,10(4)
UbiA prenyltransferase domain-containing protein 1 (UBIAD1) plays a significant role in vitamin K2 (MK-4) synthesis. We investigated the enzymological properties of UBIAD1 using microsomal fractions from Sf9 cells expressing UBIAD1 by analysing MK-4 biosynthetic activity. With regard to UBIAD1 enzyme reaction conditions, highest MK-4 synthetic activity was demonstrated under basic conditions at a pH between 8.5 and 9.0, with a DTT ≥0.1 mM. In addition, we found that geranyl pyrophosphate and farnesyl pyrophosphate were also recognized as a side-chain source and served as a substrate for prenylation. Furthermore, lipophilic statins were found to directly inhibit the enzymatic activity of UBIAD1. We analysed the aminoacid sequences homologies across the menA and UbiA families to identify conserved structural features of UBIAD1 proteins and focused on four highly conserved domains. We prepared protein mutants deficient in the four conserved domains to evaluate enzyme activity. Because no enzyme activity was detected in the mutants deficient in the UBIAD1 conserved domains, these four domains were considered to play an essential role in enzymatic activity. We also measured enzyme activities using point mutants of the highly conserved aminoacids in these domains to elucidate their respective functions. We found that the conserved domain I is a substrate recognition site that undergoes a structural change after substrate binding. The conserved domain II is a redox domain site containing a CxxC motif. The conserved domain III is a hinge region important as a catalytic site for the UBIAD1 enzyme. The conserved domain IV is a binding site for Mg2+/isoprenyl side-chain. In this study, we provide a molecular mapping of the enzymological properties of UBIAD1. 相似文献
59.
60.