首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1295篇
  免费   94篇
  1389篇
  2024年   4篇
  2023年   16篇
  2022年   21篇
  2021年   55篇
  2020年   26篇
  2019年   32篇
  2018年   40篇
  2017年   26篇
  2016年   39篇
  2015年   78篇
  2014年   67篇
  2013年   93篇
  2012年   111篇
  2011年   123篇
  2010年   65篇
  2009年   74篇
  2008年   92篇
  2007年   77篇
  2006年   72篇
  2005年   58篇
  2004年   48篇
  2003年   43篇
  2002年   35篇
  2001年   6篇
  2000年   7篇
  1999年   9篇
  1998年   7篇
  1997年   13篇
  1996年   3篇
  1995年   4篇
  1994年   3篇
  1993年   3篇
  1992年   2篇
  1990年   3篇
  1989年   5篇
  1987年   3篇
  1985年   3篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1976年   1篇
  1973年   2篇
  1972年   1篇
  1969年   2篇
  1967年   1篇
  1962年   1篇
  1960年   1篇
排序方式: 共有1389条查询结果,搜索用时 0 毫秒
101.
S-nitrosothiols (SNOs) are endogenous signaling molecules with a broad spectrum of beneficial airway effects. SNOs are normally present in the airway, but levels tend to be low in cystic fibrosis (CF) patients. We and others have demonstrated that S-nitrosoglutathione (GSNO) increases the expression, maturation, and function of wild-type and mutant F508del cystic fibrosis transmembrane conductance regulator (CFTR) in human bronchial airway epithelial (HBAE) cells. We hypothesized that membrane permeable SNOs, such as S-nitrosoglutathione diethyl ester (GNODE) and S-nitroso-N-acetyl cysteine (SNOAC) may be more efficient in increasing the maturation of CFTR. HBAE cells expressing F508del CFTR were exposed to GNODE and SNOAC. The effects of these SNOs on the expression and maturation of F508del CFTR were determined by cell surface biotinylation and Western blot analysis. We also found for the first time that GNODE and SNOAC were effective at increasing CFTR maturation at the cell surface. Furthermore, we found that cells maintained at low temperature increased cell surface stability of F508del CFTR whereas the combination of low temperature and SNO treatment significantly extended the half-life of CFTR. Finally, we showed that SNO decreased the internalization rate of F508del CFTR in HBAE cells. We anticipate identifying the novel mechanisms, optimal SNOs, and lowest effective doses which could benefit cystic fibrosis patients.  相似文献   
102.
Maya Mayblin  Magnus Course 《Ethnos》2014,79(3):307-319
While contemporary philosophers have been content to declare the logical possibilities of sacrifice exhausted, to have finally ‘sacrificed sacrifice,’ for many people around the world the notion of sacrifice – whether religious, secular, or somewhere in between – remains absolutely central to their understanding of themselves, their relations with others, and their place in the world. From religion to economics, and from politics to the environment, sacrificial tropes frequently emerge as key means of mediating and propagating various forms of power, moral discourse, and cultural identity. This paper lays out reasons for retaining sacrifice as an analytical concept within anthropology, and argues for the importance of a renewed focus on the ‘other side of sacrifice’, as a means of understanding better how sacrifice emerges beyond ritual and enters into the full gamut of social life.  相似文献   
103.
104.
In this article, we report tuning of the sensory capability of an amino acid (tryptophan) in a biomimicking anionic micellar nano cage. It has been shown that anionic surfactant concentration dictates the sensing behavior of tryptophan toward body malodor component (butyric acid) generated by bacterial degradation of tributyrin. We have proposed a fluorescence quenching mechanism that is based on short-chain fatty acid (SCFA) proximity with tryptophan present at the micelle-water interface. Anionic surfactant-induced fluorescent sensor activity of tryptophan exhibits high sensitivity (detection limit up to 10 μM) and specific selectivity (toward SCFA, < C12) in aqueous solution. We also determined antibacterial efficacy of various zinc salts based on the sensory activity of tryptophan, which has been correlated with the established resazurin assay.  相似文献   
105.
Several essential biochemical processes are situated in mitochondria. The metabolic transformation of mitochondria in distinct lineages of eukaryotes created proteomes ranging from thousands of proteins to what appear to be a much simpler scenario. In the case of Entamoeba histolytica, tiny mitochondria known as mitosomes have undergone extreme reduction. Only recently a single complete metabolic pathway of sulfate activation has been identified in these organelles. The E. histolytica mitosomes do not produce ATP needed for the sulfate activation pathway and for three molecular chaperones, Cpn60, Cpn10 and mtHsp70. The already characterized ADP/ATP carrier would thus be essential to provide cytosolic ATP for these processes, but how the equilibrium of inorganic phosphate could be maintained was unknown. Finally, how the mitosomal proteins are translocated to the mitosomes had remained unclear. We used a hidden Markov model (HMM) based search of the E. histolytica genome sequence to discover candidate (i) mitosomal phosphate carrier complementing the activity of the ADP/ATP carrier and (ii) membrane-located components of the protein import machinery that includes the outer membrane translocation channel Tom40 and membrane assembly protein Sam50. Using in vitro and in vivo systems we show that E. histolytica contains a minimalist set up of the core import components in order to accommodate a handful of mitosomal proteins. The anaerobic and parasitic lifestyle of E. histolytica has produced one of the simplest known mitochondrial compartments of all eukaryotes. Comparisons with mitochondria of another amoeba, Dictystelium discoideum, emphasize just how dramatic the reduction of the protein import apparatus was after the loss of archetypal mitochondrial functions in the mitosomes of E. histolytica.  相似文献   
106.
A key enzyme within the purine salvage pathway of parasites, nucleoside hydrolase, is proposed as a good target for new antiparasitic drugs. We have developed N-arylmethyl-iminoribitol derivatives as a novel class of inhibitors against a purine specific nucleoside hydrolase from Trypanosoma vivax. Several of our inhibitors exhibited low nanomolar activity, with 1,4-dideoxy-1,4-imino-N-(8-quinolinyl)methyl-d-ribitol (UAMC-00115, K(i) 10.8nM), N-(9-deaza-adenin-9-yl)methyl-1,4-dideoxy-1,4-imino-d-ribitol (K(i) 4.1nM), and N-(9-deazahypoxanthin-9-yl)methyl-1,4-dideoxy-1,4-imino-d-ribitol (K(i) 4.4nM) being the three most active compounds. Docking studies of the most active inhibitors revealed several important interactions with the enzyme. Among these interactions are aromatic stacking of the nucleobase mimic with two Trp-residues, and hydrogen bonds between the hydroxyl groups of the inhibitors and amino acid residues in the active site. During the course of these docking studies we also identified a strong interaction between the Asp40 residue from the enzyme and the inhibitor. This is an interaction which has not previously been considered as being important.  相似文献   
107.
The chain-breaking antioxidant activities of eight coumarins [7-hydroxy-4-methylcoumarin (1), 5,7-dihydroxy-4-methylcoumarin (2), 6,7-dihydroxy-4-methylcoumarin (3), 6,7-dihydroxycoumarin (4), 7,8-dihydroxy-4-methylcoumarin (5), ethyl 2-(7,8-dihydroxy-4-methylcoumar-3-yl)-acetate (6), 7,8-diacetoxy-4-methylcoumarin (7) and ethyl 2-(7,8-diacetoxy-4-methylcoumar-3-yl)-acetate (8)] during bulk lipid autoxidation at 37 °C and 80 °C in concentrations of 0.01–1.0 mM and their radical scavenging activities at 25 °C using TLC–DPPH test have been studied and compared. It has been found that the o-dihydroxycoumarins 36 demonstrated excellent activity as antioxidants and radical scavengers, much better than the m-dihydroxy analogue 2 and the monohydroxycoumarin 1. The substitution at the C-3 position did not have any effect either on the chain-breaking antioxidant activity or on the radical scavenging activity of the 7,8-dihydroxy- and 7,8-diacetoxy-4-methylcoumarins 6 and 8. The comparison with DL-α-tocopherol (TOH), caffeic acid (CA) and p-coumaric acid (p-CumA) showed that antioxidant efficiency decreases in the following sequence:  相似文献   
108.
While the membrane potential of cells has been shown to be patterned in some tissues, specific roles for membrane potential in regulating signalling pathways that function during development are still being established. In the Drosophila wing imaginal disc, Hedgehog (Hh) from posterior cells activates a signalling pathway in anterior cells near the boundary which is necessary for boundary maintenance. Here, we show that membrane potential is patterned in the wing disc. Anterior cells near the boundary, where Hh signalling is most active, are more depolarized than posterior cells across the boundary. Elevated expression of the ENaC channel Ripped Pocket (Rpk), observed in these anterior cells, requires Hh. Antagonizing Rpk reduces depolarization and Hh signal transduction. Using genetic and optogenetic manipulations, in both the wing disc and the salivary gland, we show that membrane depolarization promotes membrane localization of Smoothened and augments Hh signalling, independently of Patched. Thus, membrane depolarization and Hh‐dependent signalling mutually reinforce each other in cells immediately anterior to the compartment boundary.  相似文献   
109.
In the oceans and seas, environmental conditions change over multiple temporal and spatial scales. Here, we ask what factors affect the bacterial community structure across time, depth and size fraction during six seasonal cruises (2 years) in the ultra-oligotrophic Eastern Mediterranean Sea. The bacterial community varied most between size fractions (free-living (FL) vs. particle-associated), followed by depth and finally season. The FL community was taxonomically richer and more stable than the particle-associated (PA) one, which was characterized by recurrent ‘blooms’ of heterotrophic bacteria such as Alteromonas and Ralstonia. The heterotrophic FL and PA communities were also correlated with different environmental parameters: the FL population correlated with depth and phytoplankton, whereas PA bacteria were correlated primarily with the time of sampling. A significant part of the variability in community structure could, however, not be explained by the measured parameters. The metabolic potential of the PA community, predicted from 16S rRNA amplicon data using PICRUSt, was enriched in pathways associated with the degradation and utilization of biological macromolecules, as well as plastics, other petroleum products and herbicides. The FL community was enriched in predicted pathways for the metabolism of inositol phosphate, a potential phosphorus source, and of polycyclic aromatic hydrocarbons.  相似文献   
110.
Haberlea rhodopensis Friv. is unique with its ability to survive two extreme environmental stresses—desiccation to air-dry state and subzero temperatures. In contrast to desiccation tolerance, the mechanisms of freezing tolerance of resurrection plants are scarcely investigated. In the present study, the role of antioxidant defense in the acquisition of cold acclimation and freezing tolerance in this resurrection plant was investigated comparing the results of two sets of experiments—short term freezing stress after cold acclimation in controlled conditions and long term freezing stress as a part of seasonal temperature fluctuations in an outdoor ex situ experiment. Significant enhancement in flavonoids and anthocyanin content was observed only as a result of freezing-induced desiccation. The total amount of polyphenols increased upon cold acclimation and it was similar to the control in post freezing stress and freezing-induced desiccation. The main role of phenylethanoid glucoside, myconoside and hispidulin 8-C-(2-O-syringoyl-b-glucopyranoside) in cold acclimation and freezing tolerance was elucidated. The treatments under controlled conditions in a growth chamber showed enhancement in antioxidant enzymes activity upon cold acclimation but it declined after subsequent exposure to −10 °C. Although it varied under ex situ conditions, the activity of antioxidant enzymes was high, indicating their important role in overcoming oxidative stress under all treatments. In addition, the activity of specific isoenzymes was upregulated as compared to the control plants, which could be more useful for stress counteraction compared to changes in the total enzyme activity, due to the action of these isoforms in the specific cellular compartments.Supplementary informationThe online version contains supplementary material available at 10.1007/s12298-021-00998-0.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号