首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2799篇
  免费   346篇
  国内免费   2篇
  3147篇
  2022年   21篇
  2021年   38篇
  2020年   23篇
  2019年   28篇
  2018年   37篇
  2017年   35篇
  2016年   42篇
  2015年   102篇
  2014年   87篇
  2013年   145篇
  2012年   155篇
  2011年   154篇
  2010年   87篇
  2009年   91篇
  2008年   132篇
  2007年   109篇
  2006年   107篇
  2005年   99篇
  2004年   121篇
  2003年   112篇
  2002年   96篇
  2001年   62篇
  2000年   84篇
  1999年   63篇
  1998年   41篇
  1997年   23篇
  1996年   25篇
  1995年   19篇
  1994年   30篇
  1993年   26篇
  1992年   46篇
  1991年   43篇
  1990年   89篇
  1989年   78篇
  1988年   59篇
  1987年   41篇
  1986年   40篇
  1985年   32篇
  1984年   31篇
  1983年   25篇
  1982年   29篇
  1981年   28篇
  1980年   20篇
  1979年   29篇
  1978年   20篇
  1975年   28篇
  1974年   21篇
  1973年   23篇
  1971年   18篇
  1968年   17篇
排序方式: 共有3147条查询结果,搜索用时 0 毫秒
61.
62.
Arctic ground squirrels (Spermophilus parryii) overwinter in hibernaculum conditions that are substantially below freezing. During torpor, captive arctic ground squirrels displayed ambient temperature (T(a))-dependent patterns of core body temperature (T(b)), metabolic rate (TMR), and metabolic fuel use, as determined by respiratory quotient (RQ). At T(a) 0 to -16 degrees C, T(b) remained relatively constant, and TMR rose proportionally with the expanding gradient between T(b) and T(a), increasing >15-fold from a minimum of 0.0115 +/- 0.0012 ml O(2). g(-1). h(-1). At T(a) 0-20 degrees C, T(b) increased with T(a); however, TMR did not change significantly from T(b) 0 to 12 degrees C, indicating temperature-independent inhibition of metabolic rate. The overall change in TMR from T(b) 4 to 20 degrees equates to a Q(10) of 2.4, but within this range of T(b), Q(10) changed from 1.0 to 14.1. During steady-state torpor at T(a) 4 and 8 degrees C, RQ averaged 0.70 +/- 0.013, indicating exclusive lipid catabolism. At T(a) -16 and 20 degrees C, RQ increased significantly to >0.85, consistent with recruitment of nonlipid fuels. RQ was negatively correlated with maximum torpor bout length. For T(a) values <0 degrees C, this relationship supports the hypothesis that availability of nonlipid metabolic fuels limits torpor duration in hibernating mammals; for T(a) values >0 degrees C, hypotheses linked to body temperature are supported. Because anterior body temperatures differ from core, overall, the duration torpor can be extended in hibernating mammals may be dependent on brain temperature.  相似文献   
63.
The cell surface of most Gram-negative bacteria is covered with lipopolysaccharide (LPS). The network of charges and sugars provided by the dense packing of LPS molecules in the outer leaflet of the outer membrane interferes with the entry of hydrophobic compounds into the cell, including many antibiotics. In addition, LPS can be recognized by the immune system and plays a crucial role in many interactions between bacteria and their animal hosts. LPS is synthesized in the inner membrane of Gram-negative bacteria, so it must be transported across their cell envelope to assemble at the cell surface. Over the past two decades, much of the research on LPS biogenesis has focused on the discovery and understanding of Lpt, a multi-protein complex that spans the cell envelope and functions to transport LPS from the inner membrane to the outer membrane. This paper focuses on the early steps of the transport of LPS by the Lpt machinery: the extraction of LPS from the inner membrane. The accompanying paper (May JM, Sherman DJ, Simpson BW, Ruiz N, Kahne D. 2015 Phil. Trans. R. Soc. B 370, 20150027. (doi:10.1098/rstb.2015.0027)) describes the subsequent steps as LPS travels through the periplasm and the outer membrane to its final destination at the cell surface.  相似文献   
64.
Mitochondria are the major source of potentially damaging reactive oxygen species in most cells. Since ascorbic acid, or vitamin C, can protect against cellular oxidant stress, we studied the ability of mitochondria prepared from guinea pig skeletal muscle to recycle the vitamin from its oxidized forms. Although ascorbate concentrations in freshly prepared mitochondria were only about 0.2 mM, when provided with 6 mM succinate and 1 mM dehydroascorbate (the two-electron-oxidized form of the vitamin), mitochondria were able to generate and maintain concentrations as high as 4 mM, while releasing most of the ascorbate into the incubation medium. Mitochondrial reduction of dehydroascorbate was strongly inhibited by 1,3-bis(chloroethyl)-1-nitrosourea and by phenylarsine oxide. Despite existing evidence that mitochondrial ascorbate protects the organelle from oxidant damage, ascorbate failed to preserve mitochondrial alpha-tocopherol during prolonged incubation in oxygenated buffer. Nonetheless, the capacity for mitochondria to recycle ascorbate from its oxidized forms, measured as ascorbate-dependent ferricyanide reduction, was several-fold greater than total steady-state ascorbate concentrations. This, and the finding that more than half of the ascorbate recycled from dehydroascorbate escaped the mitochondrion, suggests that mitochondrial recycling of ascorbate might be an important mechanism for regenerating intracellular ascorbate.  相似文献   
65.
Summary The genetic diversity of the U.S. Cucumis sativus L. germplasm collection [757 plant introductions (PI) representing 45 countries] was assessed using 40 enzymes which represented 74 biochemical loci. Polymorphisms were observed at 18 loci (G2dh-1, Gpi-1, Gpi-2, Gr-1, Gr-2, Idh, Mdh-1, Mdh-2, Mdh-3, Mpi-2, Pepla-2, Peppap-2, Per-4, Pgd-1, Pgd-2, Pgm-1, Pgm-3, and Skdh). Two PIs (285606 and 215589) contained alleles [G2dh-1(1) and Per-4(2), respectively] which did not occur in any other PI. Other alleles which occurred in low frequencies (in < 1% of the PIs) included Gpi-1(3), Gpi-2(3), Gr-1(3), Gr-2(1), Idh(1), Mdh-1(2), Mdh-2(1), Peppap-2(1), and Pgd-1(1). Individual loci containing more than one allele in greater than 20% of the PIs included Mpi-2, Pepla-2, Pgd-2, and Pgm-1. Multivariate analyses aided in the reduction of data (principle components), depicted relationships among PIs (cluster), and identified the most discriminating enzyme loci (Pgm-1, Pepla-2, Gr-1, Pgd-2, Mpi-2, and Skdh) (classification and regression tree).Research partially supported by Asgrow, DeRuiter, Nickerson-Zwaan, Nunhems, and Sun Seed Companies; and the Graduate School, University of Wisconsin, Madison  相似文献   
66.
67.
The specific dechlorination pathways for Aroclor 1260 were determined in Baltimore Harbor sediment microcosms developed with the 11 most predominant congeners from this commercial mixture and their resulting dechlorination intermediates. Most of the polychlorinated biphenyl (PCB) congeners were dechlorinated in the meta position, and the major products were tetrachlorobiphenyls with unflanked chlorines. Using PCR primers specific for the 16S rRNA genes of known PCB-dehalogenating bacteria, we detected three phylotypes within the microbial community that had the capability to dechlorinate PCB congeners present in Aroclor 1260 and identified their selective activities. Phylotype DEH10, which has a high level of sequence identity to Dehalococcoides spp., removed the double-flanked chlorine in 234-substituted congeners and exhibited a preference for para-flanked meta-chlorines when no double-flanked chlorines were available. Phylotype SF1 had similarity to the o-17/DF-1 group of PCB-dechlorinating bacteria. Phylotype SF1 dechlorinated all of the 2345-substituted congeners, mostly in the double-flanked meta position and 2356-, 236-, and 235-substituted congeners in the ortho-flanked meta position, with a few exceptions. A phylotype with 100% sequence identity to PCB-dechlorinating bacterium o-17 was responsible for an ortho and a double-flanked meta dechlorination reaction. Most of the dechlorination pathways supported the growth of all three phylotypes based on competitive PCR enumeration assays, which indicates that PCB-impacted environments have the potential to sustain populations of these PCB-dechlorinating microorganisms. The results demonstrate that the variation in dechlorination patterns of congener mixtures typically observed at different PCB impacted sites can potentially be mediated by the synergistic activities of relatively few dechlorinating species.  相似文献   
68.

Key message

QTLs for fiber length mapped in three generations of advanced backcross populations derived from crossing Gossypium hirsutum and Gossypium mustelinum showed opportunities to improve elite cottons by introgression from wild relatives.

Abstract

The molecular basis of cotton fiber length in crosses between Gossypium hirsutum and Gossypium mustelinum was dissected using 21 BC3F2 and 12 corresponding BC3F2:3 and BC3F2:4 families. Sixty-five quantitative trait loci (QTLs) were detected by one-way analysis of variance. The QTL numbers detected for upper-half mean length (UHM), fiber uniformity index (UI), and short fiber content (SFC) were 19, 20, and 26 respectively. Twenty-three of the 65 QTLs could be detected at least twice near adjacent markers in the same family or near the same markers across different families/generations, and 32 QTLs were detected in both one-way variance analyses and mixed model-based composite interval mapping. G. mustelinum alleles increased UHM and UI and decreased SFC for five, one, and one QTLs, respectively. In addition to the main-effect QTLs, 17 epistatic QTLs were detected which helped to elucidate the genetic basis of cotton fiber length. Significant among-family genotypic effects were detected at 18, 16, and 16 loci for UHM, UI, and SFC, respectively. Six, two, and two loci showed genotype?×?family interaction for UHM, UI and SFC, respectively, illustrating complexities that might be faced in introgression of exotic germplasm into cultivated cotton. Co-location of many QTLs for UHM, UI, and SFC accounted for correlations among these traits, and selection of these QTLs may improve the three traits simultaneously. The simple sequence repeat (SSR) markers associated with G. mustelinum QTLs will assist breeders in transferring and maintaining valuable traits from this exotic source during cultivar development.
  相似文献   
69.
The molecular mechanism underlying the post-Golgi transport of G protein-coupled receptors (GPCRs) remains poorly understood. Here we determine the role of Rab8 GTPase, which modulates vesicular protein transport between the trans-Golgi network (TGN) and the plasma membrane, in the cell surface targeting of α2B- and β2-adrenergic receptors (AR). Transient expression of GDP- and GTP-bound Rab8 mutants and short hairpin RNA-mediated knockdown of Rab8 more potently inhibited the cell surface expression of α2B-AR than β2-AR. The GDP-bound Rab8(T22N) mutant attenuated ERK1/2 activation by α2B-AR, but not β2-AR, and arrested α2B-AR in the TGN compartment. Co-immunoprecipitation revealed that both α2B-AR and β2-AR physically interacted with Rab8 and glutathione S-transferase fusion protein pulldown assays demonstrated that Rab8 interacted with the C termini of both receptors. Interestingly, mutation of the highly conserved membrane-proximal C terminus dileucine motif selectively blocked β2-AR interaction with Rab8, whereas mutation of residues Val431-Phe432-Asn433-Gln434, Pro447-Trp448, Gln450-Thr451, and Trp453 in the C terminus impaired α2B-AR interaction with Rab8. Furthermore, transport inhibition by Rab8(T22N) of a chimeric β2-AR carrying the α2B-AR C terminus was similar to α2B-AR. These data provide strong evidence indicating that Rab8 GTPase interacts with distinct motifs in the C termini of α2B-AR and β2-AR and differentially modulates their traffic from the TGN to the cell surface.  相似文献   
70.
The D-arabinan-containing polymers arabinogalactan (AG) and lipoarabinomannan (LAM) are essential components of the unique cell envelope of the pathogen Mycobacterium tuberculosis. Biosynthesis of AG and LAM involves a series of membrane-embedded arabinofuranosyl (Araf) transferases whose structures are largely uncharacterised, despite the fact that several of them are pharmacological targets of ethambutol, a frontline drug in tuberculosis therapy. Herein, we present the crystal structure of the C-terminal hydrophilic domain of the ethambutol-sensitive Araf transferase M. tuberculosis EmbC, which is essential for LAM synthesis. The structure of the C-terminal domain of EmbC (EmbC(CT)) encompasses two sub-domains of different folds, of which subdomain II shows distinct similarity to lectin-like carbohydrate-binding modules (CBM). Co-crystallisation with a cell wall-derived di-arabinoside acceptor analogue and structural comparison with ligand-bound CBMs suggest that EmbC(CT) contains two separate carbohydrate binding sites, associated with subdomains I and II, respectively. Single-residue substitution of conserved tryptophan residues (Trp868, Trp985) at these respective sites inhibited EmbC-catalysed extension of LAM. The same substitutions differentially abrogated binding of di- and penta-arabinofuranoside acceptor analogues to EmbC(CT), linking the loss of activity to compromised acceptor substrate binding, indicating the presence of two separate carbohydrate binding sites, and demonstrating that subdomain II indeed functions as a carbohydrate-binding module. This work provides the first step towards unravelling the structure and function of a GT-C-type glycosyltransferase that is essential in M. tuberculosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号