首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2974篇
  免费   370篇
  国内免费   3篇
  3347篇
  2022年   25篇
  2021年   38篇
  2020年   26篇
  2019年   33篇
  2018年   41篇
  2017年   35篇
  2016年   44篇
  2015年   107篇
  2014年   94篇
  2013年   152篇
  2012年   165篇
  2011年   172篇
  2010年   99篇
  2009年   99篇
  2008年   146篇
  2007年   128篇
  2006年   119篇
  2005年   110篇
  2004年   135篇
  2003年   125篇
  2002年   105篇
  2001年   69篇
  2000年   93篇
  1999年   76篇
  1998年   43篇
  1997年   26篇
  1996年   29篇
  1995年   20篇
  1994年   33篇
  1993年   25篇
  1992年   51篇
  1991年   47篇
  1990年   94篇
  1989年   82篇
  1988年   62篇
  1987年   42篇
  1986年   42篇
  1985年   37篇
  1984年   33篇
  1983年   27篇
  1982年   29篇
  1981年   30篇
  1980年   22篇
  1979年   30篇
  1978年   20篇
  1976年   17篇
  1975年   28篇
  1974年   21篇
  1973年   23篇
  1971年   18篇
排序方式: 共有3347条查询结果,搜索用时 15 毫秒
81.
82.
83.
P3 cap modified Phe*-Ala series BACE inhibitors   总被引:1,自引:0,他引:1  
With the aim of reducing molecular weight and adjusting log D value of BACE inhibitors to more favorable range for BBB penetration and better bioavailability, we synthesized and evaluated several series of P3 cap modified BACE inhibitors obtained via replacement of the P3NHBoc moiety as seen in 3 with other polar functional groups such as amino, hydroxyl and fluorine. Several promising inhibitors emerging from this P3 cap SAR study (e.g., 15 and 19) demonstrated good enzyme inhibitory potencies (BACE-1 IC(50) <50 nM) and whole cell activities (IC(50) approximately 1 microM).  相似文献   
84.
85.
Activation of Bax following diverse cytotoxic stress has been shown to be an essential gateway to mitochondrial dysfunction and activation of the intrinsic apoptotic pathway characterized by cytochrome c release with caspase-9/-3 activation. Interestingly, c-Myc has been reported to promote apoptosis by destabilizing mitochondrial integrity in a Bax-dependent manner. Stress-induced activation of caspase-2 may also induce permeabilization of mitochondria with activation of the intrinsic death pathway. To test whether c-Myc and caspase-2 cooperate to activate Bax and thereby mediate intrinsic apoptosis, small interfering RNA was used to efficiently knock down the expression of c-Myc, caspase-2, and Apaf-1, an activating component in the apoptosome, in two human cancer cell lines, lung adenocarcinoma A-549 and osteosarcoma U2-OS cells. Under conditions when the expression of endogenous c-Myc, caspase-2, or Apaf-1 is reduced 80-90%, cisplatin (or etoposide)-induced apoptosis is significantly decreased. Biochemical studies reveal that the expression of c-Myc and caspase-2 is crucial for cytochrome c release from mitochondria during cytotoxic stress and that Apaf-1 is only required following cytochrome c release to activate caspases-9/-3. Although knockdown of c-Myc or caspase-2 does not affect Bax expression, caspase-2 is important for cytosolic Bax to integrate into the outer mitochondrial membrane, and c-Myc is critical for oligomerization of Bax once integrated into the membrane.  相似文献   
86.
Pathogenic hantaviruses are a closely related group of rodent-borne viruses which are responsible for two distinct diseases in humans, hemorrhagic fever with renal syndrome and hantavirus pulmonary syndrome (HPS, otherwise known as hantavirus cardiopulmonary syndrome, HCPS). The antiviral effect of ribavirin against Old World hantaviruses, most notably Hantaan virus, is well documented; however, only a few studies have addressed its inhibitory effect on New World hantaviruses. In the present study, we demonstrate that ribavirin is highly active against Andes virus (ANDV), an important etiological agent of HPS, both in vitro and in vivo using a lethal hamster model of HPS. Treatment of ANDV infected Vero E6 cells with ribavirin resulted in dose-dependent reductions in viral RNA and protein as well as virus yields with a half maximal inhibitory concentration between 5 and 12.5 μg ml(-1). In hamsters, treatment with as little as 5 mg kg(-1) day(-1) was 100% effective at preventing lethal HPS disease when therapy was administered by intraperitoneal injection from day 1 through day 10 post-infection. Significant reductions were observed in ANDV RNA and antigen positive cells in lung and liver tissues. Ribavirin remained completely protective when administered by intraperitoneal injections up to three days post-infection. In addition, we show that daily oral ribavirin therapy initiated 1 day post-infection and continuing for ten days is also protective against lethal ANDV disease, even at doses of 5 mg kg(-1) day(-1). Our results suggest ribavirin treatment is beneficial for postexposure prophylaxis against HPS-causing hantaviruses and should be considered in scenarios where exposure to the virus is probable. The similarities between the results obtained in this study and those from previous clinical evaluations of ribavirin against HPS, further validate the hamster model of lethal HPS and demonstrate its usefulness in screening antiviral agents against this disease.  相似文献   
87.
When lymphocytes encounter APCs bearing cognate Ag, they spread across the surface of the APC to scan for additional Ags. This is followed by membrane contraction and the formation of Ag receptor microclusters that initiate the signaling reactions that lead to lymphocyte activation. Breakdown of the submembrane cytoskeleton is likely to be required for the cytoskeleton reorganization that drives cell spreading and for removing physical barriers that limit Ag receptor mobility. In this report, we show that Ag receptor signaling via the Rap GTPases promotes the dephosphorylation and activation of the actin-severing protein cofilin and that this results in increased severing of cellular actin filaments. Moreover, we show that this cofilin-mediated actin severing is critical for the changes in actin dynamics that drive B and T cell spreading, for the formation of BCR microclusters, and for the increased mobility of BCR microclusters within the plasma membrane after BCR engagement. Finally, using a model APC, we show that activation of this Rap-cofilin signaling module controls the amount of Ag that is gathered into BCR microclusters and that this is directly related to the magnitude of the resulting BCR signaling that is initiated during B cell-APC interactions. Thus, Rap-dependent activation of cofilin is critical for the early cytoskeletal changes and BCR reorganization that are involved in APC-dependent lymphocyte activation.  相似文献   
88.
Summary To characterize the molecular properties conveyed by the isoforms of the subunit of Na,K-ATPase, the two major transepithelial transporting organs in the brine shrimp (Artemia salina), the salt glands and intestines, were isolated in pure form. The isoforms were quantified by ATP-sensitive fluorescein isothiocyanate (FITC) labeling. The salt gland enzyme exhibits only the 1 isoform, whereas the intestinal enzyme exhibits both the 1 and the 2 isoforms. After 32 hours of development, Na,K-ATPase activity [in mol Pi/mg protein/hr (1u)] in whole homogenates was 32±6 in the salt glands and 12±3 in the intestinal preparations (mean±sem). The apparent half-maximal activation constants (K 1/2) of the salt gland enzyme as compared to the intestinal enzyme were 3.7±0.6mm vs. 23.5±4mm (P<0.01) for Na+, 16.6±2.2mm vs. 8.29±1.5mm for K+ (P<0.01), and 0.87±0.8mm vs. 0.79±1.1mm for ATP (NS). The apparentK i's for ouabain inhibition were 1.1×10–4 m vs. 2×10–5 m, respectively. Treatment of whole homogenates with deoxycholic acid (DOC) produced a maximal Na,K-ATPase activation of 46% in the salt gland as compared to 23% in the intestinal enzyme. Similar differences were found with sodium dodecyl sulfate (SDS). The two distinct forms of Na,K-ATPase isolated from the brine shrimp differed markedly in three kinetic parameters as well as in detergent sensitivity. The differences inK 1/2 for Na+ and K+ are more marked than those reported for the mammalian Na,K-ATPase isoforms. These differences may be attributed to the relative abundances of the subunit isoforms; other potential determinants (e.g. differences in membrane lipids), however, have not been investigated.During the tenure of an Educational Commission For Foreign Medical Graduates Visiting Associate Professorship.  相似文献   
89.
Honey bees, Apis mellifera L., often thought to be extremely susceptible to insecticides in general, exhibit considerable variation in tolerance to pyrethroid insecticides. Although some pyrethroids, such as cyfluthrin and lambda-cyhalothrin, are highly toxic to honey bees, the toxicity of tau-fluvalinate is low enough to warrant its use to control parasitic mites inside honey bee colonies. Metabolic insecticide resistance in other insects is mediated by three major groups of detoxifying enzymes: the cytochrome P450 monooxygenases (P450s), the carboxylesterases (COEs), and the glutathione S-transferases (GSTs). To test the role of metabolic detoxification in mediating the relatively low toxicity of tau-fluvalinate compared with more toxic pyrethroid insecticides, we examined the effects of piperonyl butoxide (PBO), S,S,S-tributylphosphorotrithioate (DEF), and diethyl maleate (DEM) on the toxicity of these pyrethroids. The toxicity of the three pyrethroids to bees was greatly synergized by the P450 inhibitor PBO and synergized at low levels by the carboxylesterase inhibitor DEF. Little synergism was observed with DEM. These results suggest that metabolic detoxification, especially that mediated by P450s, contributes significantly to honey bee tolerance of pyrethroid insecticides. The potent synergism between tau-fluvalinate and PBO suggests that P450s are especially important in the detoxification of this pyrethroid and explains the ability of honey bees to tolerate its presence.  相似文献   
90.
We characterized the ability of normal human lung fibroblasts to elaborate thymocyte-stimulating activity, spontaneously, and in response to rIL-1. Supernatants from unstimulated fibroblasts did not contain thymocyte-stimulating activity, whereas supernatants from fibroblasts incubated with rIL-1 alpha or rIL-1 beta contained more thymocyte-stimulating activity than could be accounted for by passively transferred rIL-1 alone. This heightened thymocyte-stimulating activity was mediated by fibroblast-derived IL-6 inasmuch as it was neutralized by anti-serum against human rIL-6, and rIL-1-stimulated fibroblasts to accumulate messenger RNA for IL-6 and produce soluble IL-6 protein. However, IL-6 alone could not account for the intensity of this effect because rIL-6 only weakly stimulated thymocyte proliferation. In addition, antisera against the rIL-1 moiety that was used to prepare the supernatant had different effects on supernatants that contained and did not contain active IL-6. In the presence of IL-6 these antisera caused a greater decrease in thymocyte-stimulating activity than could be accounted for by passively transferred rIL-1 alone. When the IL-6 was neutralized the remaining thymocyte-stimulating activity could be quantitatively accounted for and neutralized by antisera against the rIL-1 that was passively transferred. Furthermore, rIL-6 and rIL-1 (alpha or beta) synergized in stimulating thymocyte proliferation. Thus, rIL-1 stimulates fibroblasts to produce a thymocyte-stimulating activity that is largely mediated by a synergistic interaction of fibroblast-derived IL-6 and IL-1. These findings suggest that fibroblast production of IL-6 may mediate or amplify some of the tissue effects of IL-1. In addition they suggest that biologic effects previously attributed to IL-1 may be due to IL-6 alone or the concerted action of IL-1 and IL-6.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号