首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3048篇
  免费   326篇
  国内免费   1篇
  2022年   42篇
  2021年   60篇
  2020年   29篇
  2019年   43篇
  2018年   62篇
  2017年   64篇
  2016年   90篇
  2015年   109篇
  2014年   130篇
  2013年   188篇
  2012年   173篇
  2011年   195篇
  2010年   119篇
  2009年   130篇
  2008年   148篇
  2007年   175篇
  2006年   138篇
  2005年   138篇
  2004年   116篇
  2003年   114篇
  2002年   114篇
  2001年   55篇
  2000年   41篇
  1999年   41篇
  1998年   51篇
  1997年   35篇
  1996年   26篇
  1995年   27篇
  1994年   28篇
  1993年   28篇
  1992年   31篇
  1991年   28篇
  1990年   34篇
  1989年   18篇
  1988年   33篇
  1987年   26篇
  1986年   26篇
  1985年   24篇
  1984年   22篇
  1983年   25篇
  1982年   22篇
  1980年   22篇
  1979年   17篇
  1978年   25篇
  1977年   17篇
  1976年   20篇
  1974年   17篇
  1971年   23篇
  1970年   14篇
  1968年   16篇
排序方式: 共有3375条查询结果,搜索用时 171 毫秒
91.
92.
93.
94.
95.
The spindle is a microtubule-based structure that facilitates chromosome segregation during mitosis and meiosis. Spindle assembly from dynamic microtubule building blocks is a major challenge for the dividing cell and a process that critically requires microtubule motors. In this review we focus on the mechanisms by which microtubule motors shape the spindle. Specifically, we address how motors are thought to move and arrange microtubules to form the characteristic bipolar morphology shared by all eukaryotic spindles as well as motor-dependent mechanisms of microtubule length regulation.  相似文献   
96.
Global environmental change is having profound effects on the ecology of infectious disease systems, which are widely anticipated to become more pronounced under future climate and land use change. Arthropod vectors of disease are particularly sensitive to changes in abiotic conditions such as temperature and moisture availability. Recent research has focused on shifting environmental suitability for, and geographic distribution of, vector species under projected climate change scenarios. However, shifts in seasonal activity patterns, or phenology, may also have dramatic consequences for human exposure risk, local vector abundance and pathogen transmission dynamics. Moreover, changes in land use are likely to alter human–vector contact rates in ways that models of changing climate suitability are unlikely to capture. Here we used climate and land use projections for California coupled with seasonal species distribution models to explore the response of the western blacklegged tick (Ixodes pacificus), the primary Lyme disease vector in western North America, to projected climate and land use change. Specifically, we investigated how environmental suitability for tick host‐seeking changes seasonally, how the magnitude and direction of changing seasonal suitability differs regionally across California, and how land use change shifts human tick‐encounter risk across the state. We found vector responses to changing climate and land use vary regionally within California under different future scenarios. Under a hotter, drier scenario and more extreme land use change, the duration and extent of seasonal host‐seeking activity increases in northern California, but declines in the south. In contrast, under a hotter, wetter scenario seasonal host‐seeking declines in northern California, but increases in the south. Notably, regardless of future scenario, projected increases in developed land adjacent to current human population centers substantially increase potential human–vector encounter risk across the state. These results highlight regional variability and potential nonlinearity in the response of disease vectors to environmental change.  相似文献   
97.
Genomic approaches permit direct estimation of inbreeding and its effect on fitness. We used genomic‐based estimates of inbreeding to investigate their relationship with eight adult traits in a captive‐reared Pacific salmonid that is released into the wild. Estimates were also used to determine whether alternative broodstock management approaches reduced risks of inbreeding. Specifically, 1,100 unlinked restriction‐site associated (RAD) loci were used to compare pairwise relatedness, derived from a relationship matrix, and individual inbreeding, estimated by comparing observed and expected homozygosity, across four generations in two hatchery lines of Chinook salmon that were derived from the same source. The lines are managed as “integrated” with the founding wild stock, with ongoing gene flow, and as “segregated” with no gene flow. While relatedness and inbreeding increased in the first generation of both lines, possibly due to population subdivision caused by hatchery initiation, the integrated line had significantly lower levels in some subsequent generations (relatedness: F2–F4; inbreeding F2). Generally, inbreeding was similar between the lines despite large differences in effective numbers of breeders. Inbreeding did not affect fecundity, reproductive effort, return timing, fork length, weight, condition factor, and daily growth coefficient. However, it delayed spawn timing by 1.75 days per one standard deviation increase in F (~0.16). The results indicate that integrated management may reduce inbreeding but also suggest that it is relatively low in a small, segregated hatchery population that maximized number of breeders. Our findings demonstrate the utility of genomics to monitor inbreeding under alternative management strategies in captive breeding programs.  相似文献   
98.
Evolutionary Ecology - Understanding how environmental conditions affect trait expression in animals is important for estimating the evolutionary potential of that trait. Two different mechanisms...  相似文献   
99.

Increasing rates of Anthropocene biodiversity extinctions suggest a possible sixth mass extinction event. Conservation planners are seeking effective ways to protect species, hotspots of biodiversity, and dynamic ecosystems to reduce and eventually eliminate the degradation and loss of diversity at the scale of genes, species, and ecosystems. While well-established, adequately enforced protected areas (PAs) increase the likelihood of preserving species and habitats, traditional placement methods are frequently inadequate in protecting biodiversity most at risk. Consequently, the Key Biodiversity Area (KBA) Partnership developed a set of science-based criteria and thresholds that iteratively identify sites where biodiversity is most in need of protection. KBA methodology has been rarely applied in the marine realm, where data are often extremely limited. We tested the feasibility of KBA population metrics in the Greater Caribbean marine region using occurrence and population data and threat statuses for 1669 marine vertebrates. These data identified areas where site-specific conservation measures can effectively protect biodiversity. Using KBA criteria pertaining to threatened and irreplaceable biodiversity, we identified 90 geographically unique potential KBAs, 34 outside and 56 within existing PAs. These provide starting points for local conservation managers to verify that KBA thresholds are met and to delineate site boundaries. Significant data gaps, such as population sizes, life history characteristics, and extent of habitats, prevent the full application of the KBA criteria to data-poor marine species. Increasing the rate and scope of marine sampling programs and digital availability of occurrence datasets will improve identification and delineation of KBAs in the marine environment.

  相似文献   
100.
Background aimsMesenchymal stromal cells (MSCs) provide minor salivary glands (MSGs) with support and niche cells for epithelial glandular tissue. Little is known about resident MSG-derived MSCs (MSG-MSCs) in primary Sj?gren's syndrome (PSS). The authors’ objective is to define the immunobiology of endogenous PSS MSG-MSCs.MethodsUsing culture-adapted MSG-MSCs isolated from consenting PSS subjects (n = 13), the authors performed in vitro interrogation of PSS MSG-MSC immunobiology and global gene expression compared with controls. To this end, the authors performed phenotypic and immune functional analysis of indoleamine 2,3-dioxygenase (IDO), programmed death ligand 1 (PD-L1) and intercellular adhesion marker 1 (ICAM-1) before and after interferon γ (IFNγ) licensing as well as the effect of MSG-MSCs on T-cell proliferation. Considering the female predominance of PSS, the authors also addressed the influence of 17-β-estradiol on estrogen receptor α-positive-related MSC function.ResultsThe authors found that MSG-MSCs deployed normal immune regulatory functionality after IFNγ stimulation, as demonstrated by increased protein-level expression of IDO, PD-L1 and ICAM-1. The authors also found that MSG-MSCs suppressed T-cell proliferation in a dose-dependent manner independent of 17-β-estradiol exposure. Gene ontology and pathway analysis highlighted extracellular matrix deposition as a possible difference between PSS and control MSG-MSCs. MSG-MSCs demonstrated increased α-smooth muscle actin expression in PSS, indicating a partial myofibroblast-like adaptation.ConclusionsThese findings establish similar immune regulatory function of MSG-MSCs in both PSS and control patients, precluding intrinsic MSC immune regulatory defects in PSS. PSS MSG-MSCs show a partial imprinted myofibroblast-like phenotype that may arise in the setting of chronic inflammation, providing a plausible etiology for PSS-related glandular fibrosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号